吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1102-1106.doi: 10.13229/j.cnki.jdxbgxb201504012

• • 上一篇    下一篇

应力对混凝土中氯离子渗透性的影响

王涛, 裴存栋, 韩万水, 陈峰   

  1. 长安大学 公路学院,西安 710064
  • 收稿日期:2013-09-20 出版日期:2015-07-01 发布日期:2015-07-01
  • 作者简介:王涛(1978-),男,博士研究生.研究方向:桥梁结构理论分析与检测.E-mail:313486070@qq.com
  • 基金资助:
    国家自然科学基金项目(51278064)

Influence of stress on chloride permeability in concrete

WANG Tao, PEI Cun-dong, HAN Wan-shui, CHEN Feng   

  1. School of Highway,Chang'an University,Xian 710064,China
  • Received:2013-09-20 Online:2015-07-01 Published:2015-07-01

摘要: 采用电导率法测试C30和C60混凝土中氯离子的扩散系数,并参照CCES01-2004标准对氯离子的渗透性进行评价,结果表明:在应力作用下,氯离子在C30混凝土中的渗透性比在C60混凝土中弱;氯离子在拉应力作用下的渗透性比在压应力作用下强;在压应力作用下,氯离子渗透扩散系数随着应力比的增加先减后增,压应力比为0.35时,氯离子渗透性最小;在拉应力下,氯离子渗透扩散系数随着应力比的增加持续上升,当应力比到达0.35时,扩散系数急剧增大。综合考虑下,混凝土在应力比为0.35时,氯离子的渗透性最低,对混凝土耐久性影响最小。

关键词: 道路工程, 氯离子渗透性, 电导率法, 扩散系数

Abstract: The degree of diffusion of chloride in concrete is influenced by the stress. In this paper, chloride diffusion coefficients of C30 and C60 concretes are tested using conductivity method. The chloride permeability is evaluated according to CCES01-2004 Standard. Results show that the chloride permeability of C30 concrete is weaker than that of C60 concrete. The chloride permeability under tensile stress is stronger than that under compressive stress. Under compressive stress, as the stress ratio increases, the chloride diffusion coefficient decreases first and then increases. The chloride permeability is the lowest under stress ratio of 0.35. Under tensile stress, the chloride diffusion coefficient continuously increases with the increase in stress ratio, and when stress ratio reaches 0.35 it increases sharply. Under comprehensive consideration, when the stress ratio is 0.35 the chloride permeability is the lowest and it has minimal impact on the durability of concrete.

Key words: road engineering, chloride permeability, conductivity method, diffusion coefficient

中图分类号: 

  • U416
[1] Banthia N,Bhargava A. Permeability of stressed concrete and role of fiber reinforcement[J]. ACI Mater,2007,104(1):70-76.
[2] Saito M,Ishimori H. Chloride permeability of concrete under static and repeated compressive loadings[J]. Cement and Concrete Research,1995,25(4):803-808.
[3] 方永浩,李志清,张亦涛. 持续压荷载作用下混凝土的渗透性[J]. 硅酸盐学报,2005,33(10):1281-1286. Fang Yong-hao,Li Zhi-qing,Zhang Yi-tao. Permeability of concrete under continuous stress[J].Journal of Silicate,2005,33(10):1281-1286.
[4] Banthia N,Biparva A,Mindess S. Permeability of concrete under stress[J]. Cement Concrete Research,2005,35(9):1651-1655.
[5] Wang K,Jansen D C,Shah S P,et al. Permeability study of cracked concrete[J]. Cement and Concrete Research,1997,27(3):381-393.
[6] Omkar Deo,Milani S,Narayanan N. Permeability reduction in pervious concretes due to clogging:experiments and modeling[J]. Journal of Materials in Civil Engineering,2010,22(7):741-751.
[7] Hutchinson Tara C,Soppe Travis E. Experimentally measured permeability of uncracked and cracked concrete components[J]. Journal of Materials in Civil Engineering,2012,24(5):548-559.
[8] Vardanega P J. State of the art:permeability of asphalt concrete[J]. Journal of Materials in Civil Engineering,2014,26(1):54-64.
[9] Das B B,Singh D N,Pandey S P. Rapid chloride ion permeability of opc- and ppc-based carbonated concrete[J]. Journal of Materials in Civil Engineering,2012,24(5) :606-611.
[10] Khoe Chandra, Sen Rajan, Bhethanabotla Venkat R. Oxygen permeability of frp-concrete repair systems[J]. Journal of Composites for Construction,2012,16(3):277-285.
[11] Tian Zheng-hong,Qiao Pi-zhong. Multiscale performance characterization of concrete formed by controlled permeability formwork liner[J]. Journal of Aerospace Engineering,2013,26(4):684-697.
[12] Wang H L,Xu W Y. Permeability evolution laws and equations during the course of deformation and failure of brittle rock[J]. Journal of Engineering Mechanics,2013,139(11):1621-1626.
[13] Assaad Joseph J,Harb Jacques. Use of the falling-head method to assess permeability of freshly mixed cementitious-based materials[J]. Journal of Materials in Civil Engineering,2013,25(5):580-588.
[14] Jones Christopher A,Grasley Zachary C. Correlation of radial flow-through and hollow cylinder dynamic pressurization test for measuring permeability[J]. Journal of Materials in Civil Engineering,2009,21(10):594-600.
[15] Khan M I. Permeation of high performance concrete[J]. Journal of Materials in Civil Engineering,2003,15(1):84-92.
[16] Masad Eyad,Birgisson Bjorn,Al-Omari Aslam,et al. Analytical derivation of permeability and numerical simulation of fluid flow in hot-mix asphalt[J]. Journal of Materials in Civil Engineering,2004,16(5):487-496.
[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[6] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[7] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[8] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[9] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[10] 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[11] 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[12] 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[13] 蔡氧, 付伟, 陶泽峰, 陈康为. 基于扩展有限元模型的土工布防荷载型反射裂缝影响分析[J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[14] 刘寒冰, 张互助, 王静. 失水干燥对路基压实黏质土抗剪强度特性的影响[J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
[15] 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!