吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 528-534.doi: 10.13229/j.cnki.jdxbgxb201602030

• 论文 • 上一篇    下一篇

快速递归多阈值分割算法

申铉京1, 2, 张赫1, 2, 陈海鹏1, 2, 王玉1, 2, 3   

  1. 1.吉林大学 计算机科学与技术学院,长春 130012;
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春 130012;
    3.吉林大学 应用技术学院,长春 130012
  • 收稿日期:2014-07-20 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 陈海鹏(1978),男,副教授,博士.研究方向:图像处理与模式识别,多媒体信息安全.E-mail:chenhp@jlu.edu.cn E-mail:xjshen@jlu.edu.cn
  • 作者简介:申铉京(1958-),男,教授,博士生导师.研究方向:图像处理与模式识别,多媒体信息安全,智能控制技术.E-mail:xjshen@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61305046); 吉林省自然科学基金项目(20140101193JC); 吉林省青年科学基金项目(20130522117JH)

Fast recursive multi-thresholding algorithm

SHEN Xuan-jing1, 2, ZHANG He1, 2, CHEN Hai-peng1, 2, WANG Yu1, 2, 3   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China;
    3.College of Applied Technology,Jilin University, Changchun 130012, China
  • Received:2014-07-20 Online:2016-02-20 Published:2016-02-20

摘要: 针对强调波谷邻域算法在目标区域相对于背景区域较小且其之间的波谷特征并不十分明显的情况下,无法获得正确阈值的问题,提出了一种基于波谷邻域信息和波谷波峰相对特征的全局阈值分割算法.本算法在最大类间方差(OTSU)算法的基础上以直方图中波谷邻域灰度值和波谷波峰灰度值的相对关系为权值,改善最大类间方差算法定位阈值的准确性,使算法所确定的阈值在直方图中具有较小的波谷波峰比值,即使最优阈值定位到与临近波峰具有较大高度差的波谷灰度值.为提高分割效率,本文以前述算法为基础,采用递归单阈值方式进行图像的多阈值分割.实验证明,对强调波谷邻域算法存在的问题本算法有明显的改善,且在多阈值分割的效果及运行时间方面本文算法均具有十分良好的表现.

关键词: 计算机应用, 图像分割, 多阈值分割, 递归, 最大类间方差算法, 波谷

Abstract: The Neighborhood Valley-emphasis method can not get the right threshold value in some cases, such as the valley feature between the target and background is not very distinct. In order to solve this problem, a global thresholding method is proposed. This method is based on the gray information around the valley-point neighborhood and the relative characteristics between the valley point and its adjacent crest-point. The proposed method weights the objective function with the gray information around the valley-point neighborhood and the relation between the valley-point and its adjacent crest-point. It improves the accuracy of the threshold obtained by OTSU. The optimal threshold got by the proposed method has less valley-to-crest ratio. In other word, the valley gray is taken as the optimal threshold, which has larger height difference with it adjacent crest-point. In order to improve the efficiency, a recursive single threshold method based on the aforesaid algorithm is used to achieve the image multi-threshold segmentation. Experiment results show that the proposed method has great segmentation performance and low time complexity.

Key words: computer application, image segmentation, multilevel thresholding, recursion, OTSU method, valley point

中图分类号: 

  • TP391
[1] Sahoo P K, Soltani S, Wong A K C. A survey of thresholding techniques[J]. Computer Vision, Graphics, and Image Processing, 1988, 41(2): 233-260.
[2] Sezgin M. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146-168.
[3] Xue J H, Zhang Y J. Ridler and Calvard's, Kittler and Illingworth's and Otsu's methods for image thresholding[J]. Pattern Recognition Letters, 2012, 33(6): 793-797.
[4] Yimit A, Hagihara Y, Miyoshi T, et al. 2-D direction histogram based entropic thresholding[J]. Neurocomputing, 2013, 120: 287-297.
[5] 魏巍, 申铉京, 千庆姬, 等. 三维最大Renyi熵的灰度图像阈值分割算法[J]. 吉林大学学报: 工学版, 2011, 41(4): 1083-1088.
Wei Wei, Shen Xuan-jing, Qian Qing-ji, et al. Thresholding algorithm based on threedimensional Renyi's entropy[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(4): 1083-1088.
[6] 巢渊, 戴敏, 陈恺, 等. 基于广义反向粒子群与引力搜索混合算法的多阈值图像分割[J]. 光学精密工程, 2015, 23(3): 879-886.
He Zhi-yong, Sun Li-ning, Huang Wei-guo, et al.Thresholding segmentation algorithm based on Otsu criterion and line intercept histogram[J]. Optics and Precision Engineering, 2012, 20(10):2315-2323.
[7] 陈恺, 陈芳, 戴敏,等. 基于萤火虫算法的二维熵多阈值快速图像分割[J]. 光学精密工程, 2014, 22(2):517-523.
Chao Yuan, Dai Min, Chen Kai, et al. Image segmentation of multilevel threshold using hybrid PSOGSA with generalized opposition-based learning[J]. Optics and Precision Engineering, 2014, 22(2):517-523.
[8] Otsu N. A threshold selection method from gray-level histograms[J]. Automatica, 1975, 11(285-296): 23-27.
[9] Xu X, Xu S, Jin L, et al. Characteristic analysis of Otsu threshold and its applications[J]. Pattern Recognition Letters, 2011, 32(7): 956-961.
[10] Morii F. An image thresholding method using a minimum weighted squareddistortion criterion[J]. Pattern Recognition, 1994, 28(7): 1063-1071.
[11] Hou Z, Hu Q, Nowinski W L. On minimum variance thresholding[J]. Pattern Recognition Letters, 2006, 27(14): 1732-1743.
[12] Ng H F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14): 1644-1649.
[13] 申铉京, 龙建武, 陈海鹏, 等. 三维直方图重建和降维的Otsu阈值分割算法[J]. 电子学报, 2011, 39(5): 1108-1114.
Shen Xuan-jing, Long Jian-wu, Chen Hai-peng, et al. Otsu thresholding algorithm based on rebuilding and dimension reduction of the 3-dimensional histogram[J]. Acta Electronica Sinica, 2011, 39(5): 1108-1114.
[14] Fan J L, Lei B. A modified valley-emphasis method for automatic thresholding[J]. Pattern Recognition Letters, 2012, 33(6): 703-708.
[15] 张健, 李宏升. 基于图论阈值算法的图像分割研究[J]. 液晶与显示, 2014, 29(4):592-597.
Zhang Jian, Li Hong-shengl. Image mosaic research based on wavelet and rough set algorithm[J]. Chinese Journal of Liquid Crystal and Displays , 2014, 29(4):592-597.
[16] Berkley Image Database[EB/OL].[2013-11-12]. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/seg bench/.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[7] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[8] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[9] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[10] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!