吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1651-1659.doi: 10.13229/j.cnki.jdxbgxb201605040

• • 上一篇    下一篇

协作认知无线网络中基于优先级队列的两级中心频谱共享机制

李钊, 饶正发, 蔡沈锦   

  1. 西安电子科技大学 综合业务网理论及关键技术国家重点实验室,西安 710071
  • 收稿日期:2015-04-22 出版日期:2016-09-20 发布日期:2016-09-20
  • 作者简介:李钊(1981-),男,副教授,博士.研究方向:宽带无线通信.E-mail:zli@xidian.edu.cn
  • 基金资助:
    国家自然科学基金项目(61102057); 新一代宽带无线移动通信网重大专项项目(2012ZX03003005-005); 高等学校引智计划基金项目(B08038); 中央高校基本科研业务费项目(K5051301014).

Priority queue based two-layer centralized spectrum sharing in cooperative cognitive radio networks

LI Zhao, RAO Zheng-fa, CAI Shen-jin   

  1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China
  • Received:2015-04-22 Online:2016-09-20 Published:2016-09-20

摘要: 针对协作认知无线网络(CCRN)设计了一种基于优先级队列的两级中心协作频谱共享机制(PQTL-CSS)。通过招募认知用户作为中继,协助完成授权通信,并将传统的数据协作拓展至管理协作,由协作认知节点协调其他认知节点的接入,形成由主用户和协作认知节点构成的两级中心管理结构。在保障主用户最高优先级的同时,作为对认知节点协助授权业务传输的回报,赋予其高于非协作认知节点的信道接入权限。本文对不同用户的时延和吞吐量性能进行仿真,结果表明,PQTL-CSS能够在业务随机性较强的情况下,实现多种类型节点的动态、高效频谱共享。

关键词: 通信技术, 协作认知无线网络, 频谱共享, 优先级队列, 时延

Abstract: A two-layer centralized spectrum sharing scheme based on priority queue (PQTL-CSS) is designed for Cooperative Cognitive Radio Networks (CCRN). By recruiting a secondary user as relay, the primary transmission is accomplished with assistance. The proposed mechanism extends the traditional data cooperation to management collaboration, with which Cooperative Secondary User (CSU) coordinates the access of other cognitive nodes. Then, a two-layer centralized management structure is formed by the primary user and CSU corporately. On the premise that the highest priority of primary user is guaranteed, the CSU is given higher access authority in comparison with those non-cooperative secondary users, as a reward of assisting the primary's data transmission. Simulation is conducted with regard to the delay and throughput performance of different types of user. Results show that the proposed PQTL-CSS can achieve dynamic and highly efficient spectrum sharing of multiple types of node in the situation where traffic is of high randomness.

Key words: communication technology, cooperative cognitive radio networks, spectrum sharing, priority queue, delay

中图分类号: 

  • TN929.5
[1] Marcus M, Burtle J, Franca B, et al. Federal communications commission. Spectrum policy task force report[R]. Washington: FCC, 2002.
[2] Haykin S. Cognitive radio: brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
[3] Mitola J, Maguire G Q. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18.
[4] Letaief K B, Zhang W. Cooperative communications for cognitive radio networks[J]. Proceedings of the IEEE, 2009, 97(5): 878-893.
[5] Simeone O, Stanojev I, Savazzi S, et al. Spectrum leasing to cooperating secondary ad hoc networks[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 203-213.
[6] Zhang J, Zhang Q. Stackelberg game for utility-based cooperative cognitive radio networks[C]∥The ACM International Symposium on Mobile Ad Hoc Networking and Computing (Mobihoc). New Orleans: ACM, 2009: 23-32.
[7] Li P, Guo S, Zhuang W, et al. On efficient resource allocation for cognitive and cooperative communications[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(2): 264-273.
[8] Yi Y, Zhang J, Zhang Q, et al. Cooperative communication-aware spectrum leasing in cognitive radio networks[C]∥IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN). Singapore: IEEE, 2010: 1-11.
[9] 王朝岗,蔡发书,刘银川.认知无线网络频谱协作感知能耗与吞吐量的凸优化研究[J].重庆邮电大学学报:自然科学版,2015,27(4):506-513.
Wang Chao-gang,Cai Fa-shu,Liu Yin-chuan.Convex optimize the energy consumption and throughput of cooperative spectrum sensing in cognitive radio networks[J]Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2015,27(4):506-513.
[10] Hua S, Liu H, Wu M, et al. Exploiting MIMO antennas in cooperative cognitive radio networks[C]∥IEEE International Conference on Computer Communications (INFOCOM). Shanghai: IEEE, 2011: 2714-2722.
[11] Wang S, Zhang J, Tong L. Delay analysis for cognitive radio networks with random access: a fluid queue view[C]∥IEEE International Conference on Computer Communications (INFOCOM).San Diego: IEEE, 2010: 1-9.
[12] Abhaya V G, Tari Z, Zeephongsekul P, et al. Performance analysis of EDF scheduling in a multi-priority preemptive M/G/1 queue[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 25(8): 2149-2158.
[13] Suliman I, Lehtomaki J. Queueing analysis of opportunistic access in cognitive radios[C]∥International Workshop on IEEE Cognitive Radio and Advanced Spectrum Management (CogART). Aalborg: IEEE, 2009: 153-157.
[14] Gavili A, ShahbazPanahi S. Optimal spectrum leasing and network beamforming for two-way relay networks[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence: IEEE, 2014: 7590-7593.
[15] Shah M A, Zhang S, Maple C. Control channel etiquettes: Implementation and evaluation of a hybrid approach for cognitive radio networks[C]∥IEEE Personal Indoor and Mobile Radio Communications (PIMRC). London: IEEE, 2013:1823-1828.
[16] Bertsekas D B, Gallager R G. Data Networks[M]. New Jersey: Prentice Hall, 1992.
[1] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[2] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[3] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[4] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[5] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[6] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[7] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[8] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] 李炜, 李亚洁. 基于离散事件触发通信机制的非均匀传输网络化控制系统故障调节与通信满意协同设计[J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[10] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[11] 武伟, 王世刚, 赵岩, 韦健, 钟诚. 蜂窝式立体元图像阵列的生成[J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[12] 袁建国, 张锡若, 邱飘玉, 王永, 庞宇, 林金朝. OFDM系统中利用循环前缀的非迭代相位噪声抑制算法[J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[13] 王金鹏, 曹帆, 贺晓阳, 邹念育. 基于多址干扰和蜂窝间互扰分布的多载波系统联合接收方法[J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
[14] 石文孝, 孙浩然, 王少博. 无线Mesh网络信道分配与路由度量联合优化算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1918-1925.
[15] 姜来为, 沙学军, 吴宣利, 张乃通. LTE-A异构网络中新的用户选择接入和资源分配联合方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1926-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .