吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 552-556.doi: 10.13229/j.cnki.jdxbgxb201702029

• • 上一篇    下一篇

Ti-B-C-N粉末烧结的微观组织及其性能

杨悦1, 2, 李雪1, 2, 徐晓丹1, 2   

  1. 1.长春工业大学 材料科学与工程学院,长春 130012;
    2.长春工业大学 教育部先进结构材料重点实验室,长春 130012
  • 收稿日期:2015-09-16 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 徐晓丹(1975-),女,工程师.研究方向:金属基材料制备及性能.E-mail:xuxiaodan@ccut.edu.cn
  • 作者简介:杨悦(1974-),女,教授,博士.研究方向:新型陶瓷材料制备及其增韧机理.E-mail:yangyue@ccut.edu.cn
  • 基金资助:
    国家自然科学基金项目(51172088).

Microstructure and properties of sintered Ti-B-C-N power

YANG Yue1, 2, LI Xue1, 2, XU Xiao-dan1, 2   

  1. 1.School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China;
    2.Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
  • Received:2015-09-16 Online:2017-03-20 Published:2017-03-20

摘要: 以Ti-B-C-N四元相陶瓷粉末为实验材料,采用真空热压烧结和放电等离子烧结(SPS)工艺对其进行烧结,真空热压烧结和放电等离子烧结温度分别为1900 ℃和1450 ℃,烧结压力分别为20 MPa和40 MPa,保温时间分别为1 h和3 min。使用X射线衍射仪分析试样物相组成,扫描电子显微镜观察试样表面微观形貌和断口形貌,并测试了烧结试样的硬度和抗弯强度。结果表明:真空热压烧结和放电等离子烧结块体的主要生成相为TiB2相和TiCN相,相对密度分别为97.40%和93.06%,热压烧结试样致密度高,颗粒尺寸大,放电等离子烧结试样孔隙较多,晶粒尺寸小;抗弯强度分别为259.98 MPa和335.17 MPa;弹性模量分别为89.11 GPa和162.92 GPa;洛氏硬度分别为78.8和84.9;放电等离子烧结试样表现出较好的力学性能。

关键词: 复合材料, Ti-B-C-N粉末, 热压烧结, 放电等离子烧结

Abstract: Ti-B-C-N power was sintered by hot pressing sintering and spark plasma sintering methods. The sintering temperatures were 1900 ℃ and 1450 ℃, the sintering pressing pressures were 20 MPa and 40 MPa, and the sintering times were 1 h and 3 min, respectively. The phase composition wa analyzed using X-ray Diffraction (XRD). The surface morphology and fracture morphology of the sintered samples were observed with Scanning Electron Microscope (SEM). The hardness and transverse rupture strength of the sintered samples were investigated. The results show that the sintered samples were mainly composed of phases TiB2 and TiCN, the relative densities were 97.40% and 93.06%. The density of hot pressing sample was higher and particle size was significantly grown up. The transverse rupture strengths were 259.98 MPa and 335.17 MPa, the hardness (HRA) were 78.8 and 84.9, the elastic moduli were 89.11 GPa and 162.92 GPa, respectively. The spark plasma sintered samples show better mechanical properties.

Key words: composite material, Ti-B-C-N powder, hot pressing sintering, spark plasma sintering

中图分类号: 

  • TB33
[1] Liu Ning, Yin Wei-hai, Zhu Long-wei. Effect of TiC/TiN powder size on microstructure and properties of Ti(C,N)-based cermets[J]. Materials Science and Engineering A,2007(445/446): 707-716.
[2] Wyzga P, Jaworska L, Bucko M M, et al. TiN-TiB 2 compisites prepared by various sintering techniques[J]. Journal of Refractory Metals and Hard Materials, 2013, 41: 571-576.
[3] Wang De-yong, Wang Hui-hua, Sun Shu-chen, et al. Fabrication and characterization of TiB 2 /TiC composites[J]. International Journal of Refractory Metals and Hard Materials, 2014, 45: 95-101.
[4] Wen G, Li S B, Zhang B S, et al. Reaction synthesis TiB 2 -TiC composite with enhanced toughness[J]. Acta Materialia, 2001, 49: 1463-1470.
[5] Gotman I, Travitzky N A, Gutmanas E Y. Dense in situ TiB 2 /TiN and TiB 2 /TiC ceramic matrix composite: reactice synthesis and properties[J]. Materials Science and Engineering A,1998(244): 127-137.
[6] 王丽丽,郑伟涛,李海波,等. Al 2 O 3 -SiC纳米复合陶瓷的制备及其表征[J]. 吉林大学学报 :理学版,2006, 44(1): 96-100.
Wang Li-li, Zheng Wei-tao, Li Hai-bo, et al. Preparation and characterization of Al 2 O 3 -SiC cerimic nanocomposites[J]. Journal of Jilin University (Science Edition),2006, 44(1): 96-100.
[7] 夏阳华,丰平,胡耀波,等.放电等离子烧结制备Ti(C,N)基金属陶瓷[J].机械工程材料,2004, 28(5): 29-31.
Xia Yang-hua, Feng Ping, Hu Yao-bo, et al. Ti(C,N)-based cermet fabricated by spark plasma sintering[J]. Materials for Mechanical Engineering,2004,28(5): 29-31.
[8] Watanabe T, Doutsu T, Nakanishi T. Singtering properties and cutting-tool performance of Ti(C,N)-based ceramics[J]. Key Engineering Materials, 1996, 114: 189-266.
[9] Vallauri D,Debenedetti B,Jaworska L, et al. Wear-resistant ceramic and metal-ceramic Wear-resistant ceramic and metal-ceramic ultrafine composites fabricated from combustion synthesised metastable powders[J]. International Journal of Refractory Metals and Hard Materials,2009, 27(6): 996-1003.
[10] Musa C, Locci A M, Licheri R, et al. Spark plasma sintering of self-propagating high-temperature synthesized TiC 0.7 /TiB 2 powders and detailed characterization of dense product[J]. Ceramics International,2009, 35(7): 2587-2599.
[11] Avilés M A,Ernesto C,Córdoba J M, et al. In situ synthesis of ceramic composite materials in the Ti-B-C-N system by a mechanically induced self-sustaining reaction[J]. Journal of the American Ceramic Sicoety,2012, 95(7): 2133-2139.
[12] Cheng J F, Katsui H, Tu R, et al. Rod-like eutectia struture of arc-melted TiB 2 -TiC x N 1- x composite[J]. Journal of the European Ceramic Society,2014, 34(9): 2089-2094.
[1] 胡志清, 郑会会, 徐亚男, 张春玲, 党停停. 表面微沟槽对Al/CFRP胶结性能的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[2] 刘耀辉, 陈乔旭, 宋雨来, 沈艳东. 火山灰-SBS、胶粉-SBS和SBS改性沥青压缩变形行为及机理[J]. 吉林大学学报(工学版), 2017, 47(6): 1861-1867.
[3] 李静, 王哲. 真三轴加载条件下混凝土的力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[4] 陈江义, 刘保元. 纤维断裂损伤对复合材料板中导波频散特性的影响[J]. 吉林大学学报(工学版), 2017, 47(1): 180-184.
[5] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[6] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[7] 彭爱东, 刘贺男. 基于水包油微乳液法的方形苝纳米颗粒的合成与荧光性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1583-1586.
[8] 刘利萍, 刘勇兵, 姬连峰, 曹占义, 杨晓红. 原位颗粒增强钛基复合材料高温流变行为[J]. 吉林大学学报(工学版), 2016, 46(4): 1197-1201.
[9] 赵刚, 孙壮志, 郭华君, 隋志阳, 李芳, 赵华兴. 基于离子聚合物金属基复合材料线性驱动单元的性能[J]. 吉林大学学报(工学版), 2016, 46(1): 221-227.
[10] 闫光,韩小进,闫楚良,祝连庆. 含口盖复合材料圆柱壳轴压屈曲性能分析[J]. 吉林大学学报(工学版), 2015, 45(1): 187-192.
[11] 闫光, 范舟, 李钟海, 程小全, 刘克格, 左春柽. 复合材料加口盖柱壳的设计与分析[J]. , 2012, (06): 1437-1441.
[12] 刘家安, 于思荣, 朱先勇. Zn-22Al泡沫夹芯复合板的三点弯曲性能[J]. 吉林大学学报(工学版), 2012, 42(02): 344-348.
[13] 刘曙光, 闫敏, 闫长旺, 郭荣跃. 聚乙烯醇纤维强化水泥基复合材料的抗盐冻性能[J]. 吉林大学学报(工学版), 2012, 42(01): 63-67.
[14] 马丽, 周凌, 何慧, 罗远芳, 贾德民. 竹粉高温蒸煮对竹粉/ABS木塑复合材料性能的影响[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 205-209.
[15] 刘晓波1,2,赵宇光1,杨雯1,张家陶1. (Mg2Si+SiCp)/Mg复合材料的耐磨性[J]. 吉林大学学报(工学版), 2011, 41(6): 1618-1624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!