吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 557-566.doi: 10.13229/j.cnki.jdxbgxb201702030

• 论文 • 上一篇    下一篇

基于能量规划的崎岖地面四足机器人平面跳跃控制

柴汇1, 荣学文1, 唐兴鹏1, 李贻斌1, 张勤2, 李岳炀2   

  1. 1.山东大学 控制科学与工程学院,济南 250061;
    2.济南大学 自动化与电气工程学院, 济南 250022
  • 收稿日期:2015-09-28 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 荣学文(1973-),男,高级工程师.研究方向:液压传动,机器人控制.E-mail:rongxw@sdu.edu.cn
  • 作者简介:柴汇(1983-),男,博士研究生.研究方向:机器人控制.E-mail:pigging.chai@gmail.com
  • 基金资助:
    “863”国家高技术研究发展计划项目(2015AA042201); 国家自然科学基金项目(61233014); 国家自然科学基金青年科学基金项目(61203083,61503153); 山东省自然科学基金项目(ZR2013EEM027).

Gait based planar hopping control of quadruped robot on uneven terrain with energy planning

CHAI Hui1, RONG Xue-wen1, TANG Xing-peng1, LI Yi-bin1, ZHANG Qin2, LI Yue-yang2   

  1. 1.School of Control Science and Engineering, Shandong University, Jinan 250061,China;
    2.School of Electrical Engineering, Jinan University, Jinan 250022, China
  • Received:2015-09-28 Online:2017-03-20 Published:2017-03-20

摘要: 针对四足机器人传统奔跑控制方法中存在的俯仰角波动以及崎岖地形适应问题,提出了一种基于Trot具有前后脚同时支撑步态的崎岖地形跳跃控制方法。建立了步态支撑相平面运动模型,并通过虚拟模型控制,实现了躯干平面运动控制解耦。对虚拟模型中躯干的运动过程进行了能量规划,计算出纵向虚拟位置刚度,实现了跳跃周期控制;通过水平方向虚拟力的比例控制实现了机器人水平运动速度控制;采用大位置误差增益的PD控制方法实现了躯干姿态控制,保证了跳跃过程中躯干俯仰角的稳定。在虚拟物理仿真环境中建立了四足机器人的平面虚拟样机,对控制方法进行了仿真实验以及在假设条件不满足情况下的鲁棒性测试,仿真实验结果表明了该方法对跳跃控制的有效性。

关键词: 自动控制技术, 机器人控制, 平面跳跃控制, 能量规划, 虚拟模型, 主动阻抗

Abstract: To make a quadruped robot run on rough terrain with less vibration on the pitch angle of the torso, a gait based hopping control approach with a passive joint is proposed. A planar kinematic model is built based on the supporting phase with at least one front stance leg and one rear stance leg, such as trotting gait. The control of 3-dof planar movements of the torso is decoupled by the virtual model and force distribution control. In the hopping control, the hopping cycle is controlled by the energy planning and active independence control on vertical direction, the horizontal velocity is controlled by a proportion control, and the pitch angle is held by a position control with high gain. The control approach and its robustness are verified by the experiments in virtual physical simulation environment.

Key words: automatic control technology, robot control, planar hopping control, energy planning, virtual model, active independence

中图分类号: 

  • TP242.6
[1] Kajita S, Espiau B. Legged Robots[M]. Berlin: Springer, 2008: 361-389.
[2] Li Yi-bin,Li Bin,Ruan Jiu-hong,et al.Research of mammal bionic quadruped robots: a review[C]∥IEEE Conference on Robotics, Automation and Mechatronics (RAM),Qingdao,China,2011:166-171.
[3] Raibert M, Blankespoor K, Nelson G, et al. Bigdog, the rough-terrain quadruped robot[C]∥Proceedings of the 17th World Congress. Seoul: International Federation of Automatic Control, 2008, 17(1): 10822-10825.
[4] Bloss R. Robot walks on all four legs and carries a heavy load[J]. Industrial Robot: An International Journal, 2012, 39(5): 524-525.
[5] Semini C. HyQ-Design and development of a hydraulically actuated quadruped robot[D]. Genoa, Italy: University of Genoa, 2010.
[6] Cho J,Kim J T,Park S,et al.Dynamic walking of JINPOONG on the uneven terrain[C]∥The 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI),Jeju,2013:468-469.
[7] 柴汇,孟健,荣学文,等.高性能液压驱动四足机器人SCalf的设计与实现[J].机器人,2014,36(4):385-391.
[8] Raibert M H. Legged Robots that Balance[M]. Cambridge,MA: The MIT Press,1986.
[9] Ahmadi M, Buehler M. Stable control of a simulated one-legged running robot with hip and leg compliance[J]. IEEE Transactions on Robotics and Automation, 1997, 13(1): 96-104.
[10] Sato A,Buehler M.A planar hopping robot with one actuator:design,simulation,and experimental results[C]∥International Conference on Intelligent Robots and Systems (IROS),Sendai,2004:3540-3545.
[11] Smith J A, Poulakakis I. Rotary gallop in the untethered quadrupedal robot scout II[C]∥International Conference on Intelligent Robots and Systems (IROS), Sendai, 2004.
[12] Ananthanarayanan A,Azadi M,Kim S.Towards a bio-inspired leg design for high-speed running[J].Bioinspiration & Biomimetics,2012,7(4):913-929.
[13] Valenzuela A K, Kim S. Optimally scaled hip-force planning:a control approach for quadrupedal running[C]∥IEEE International Conference on Robotics and Automation (ICRA), St Paul: IEEE, 2012: 1901-1907.
[14] Boston Dynamics. CHEETAH-Fastest legged robot[EB/OL].[2012-09-05].http://www.bostondynamics.com/robot_cheetah.html.
[15] Ackerman E. Whoa: Boston Dynamics announces new wildCat quadruped robot[EB/OL].[2013-10-04]. http://spectrum.ieee.org/automaton/robotics/military-robots/whoa-boston-dynamics-announces-new-wildcat-quadruped.
[16] Robert F. Design of the SCOUT II Quadruped with Preliminary Stair-Climbing[D]. Montréal, Canada: McGill University, 1999.
[17] Shkolnik A, Levashov M, Manchester I R, et al. Bounding on rough terrain with the LittleDog robot[J]. The International Journal of Robotics Research, 2010, 30(2): 192-215.
[18] Hodgins J K, Raibert M. Adjusting step length for rough terrain locomotion[J]. IEEE Transactions on Robotics and Automation, 1991, 7(3): 289-298.
[19] Palmer L R, Orin D E. Quadrupedal running at high speed over uneven terrain[C]∥International Conference on Intelligent Robots and Systems (IROS), San Diego: IEEE, 2007: 303-308.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!