吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 221-227.doi: 10.13229/j.cnki.jdxbgxb201601033

• • 上一篇    下一篇

基于离子聚合物金属基复合材料线性驱动单元的性能

赵刚, 孙壮志, 郭华君, 隋志阳, 李芳, 赵华兴   

  1. 哈尔滨工程大学 机电工程学院,哈尔滨 150001
  • 收稿日期:2014-06-13 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 孙壮志(1987-),男,博士研究生.研究方向:智能驱动器,仿生人工肌肉,水下推进技术.E-mail:sunzhuangzhi@hrbeu.edu.cn
  • 作者简介:赵刚(1956-),男,教授.研究方向:仿生制造.E-mail:zhaogang@hrbeu.edu.cn
  • 基金资助:
    国家自然科学基金项目(50905037); 中央高校基本科研业务费专项项目(HEUCF140713)

Performance of linear actuator unit based on ionic polymer metal composites

ZHAO Gang, SUN Zhuang-zhi, GUO Hua-jun, SUI Zhi-yang, LI Fang, ZHAO Hua-xing   

  1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2014-06-13 Online:2016-01-30 Published:2016-01-30

摘要: 为提高输出力,设计了一种新型线性驱动单元,首先通过化学沉积镀的方式制备了IPMC材料,采用表层分割等方法制备线性驱动单元模型,建立了疲劳脱落评价方法,并分析了悬臂梁驱动的打卷现象,最后利用IPMC实验测试平台对方波电压下线性驱动单元性能进行研究。结果表明:控制电压小于4 V,长宽比小于3.5,可减少高电压、大尺寸打卷现象;沿运动方向的输出力随电压增加先增大后减小,4 V时最大输出力为2.15×10-2 N,是悬臂梁输出能力的4倍,而输出位移不随电压变化;垂直运动方向的输出力不随电压变化,与悬臂梁输出能力相当,而位移输出随着电压增加先增大后减小,4 V时最大输出位移为41 mm;疲劳脱落分析结果证实了线性驱动单元选取3~4 V电压驱动,性能最佳。

关键词: 自动控制技术, 离子聚合物复合材料(IPMC), 线性驱动单元, 疲劳脱落, 打卷

Abstract: In order to enhance the output force of Ionic Polymer Metal Composites (IPMC), a novel linear actuator unit was designed. First the method of chemical deposition was used to prepare IPMC materials. Then the surface segmentation method was applied to fabricate the linear actuator unit model. The evaluation technique of fatigue peeling was proposed, and the crispation phenomenon of cantilever beam driving was analyzed. The performance of the linear actuator unit under square wave voltage was researched using an IPMC experiment platform. Results show that the crispation phenomenon can be reduced by controlling the voltage lower than 4 V, and the length to width aspect ratio smaller than 3.5. The output force along the motion direction first increases then decreases as the voltage increases, and the maximum output force is 2.15×10-2 N when the voltage is 4 V, which is four times of the output ability of the cantilever beam. The output displacement keeps constant the does not change with the voltage. Furthermore, the output force along vertical motion direction also does not change with the voltage, which corresponds to the output ability of the cantilever beam. The output displacement also first increases then decreases as the voltage increases, and the maximum output displacement is 41 mm when the voltage is 4 V. The fatigue peeling analysis verifies that the optimal performance of the linear actuator unit is obtained when the voltage ranges from 3 V to 4 V.

Key words: automatic control technology, ionic polymer metal composites(IPMC), linear actuator unit, fatigue peeling, crispation

中图分类号: 

  • TP13
[1] Shahinpoor M, Kim K. Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimeric sensors, actuators and artificial muscles[J]. Sensor and Actuators A, 2002, 96(2): 125-132.
[2] Konyo M, Konishi Y, Tadokoro S,et al. Development of velocity sensor using ionic polymer metal composites[J]. Smart Structures and Materials, 2004, 5385: 307-318.
[3] Shahinpoor M. Recent advances in ionic polymer conductor composite materials as distributed nanosensors, nanoactuators and artificial muscles[J]. Smart Structures and Materials, 2005, 5759: 49-63.
[4] Yim W, Lee J, Kim K J. An artificial muscle actuator for biomimetic underwater propulsors [J]. Bioinspiration and Biomimetics, 2007, 2(2): 31-41.
[5] Chen Z, Um T I, Bart-Smith H. A novel fabricated of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions[J]. Sensors and Actuators A, 2011, 168(1): 131-139.
[6] Shahinpoor M. Biomimetic robotic venus flytrap (dionaea muscipula ellis) made with ionic polymer metal composites[J]. Bioinspiration and Biomimetics, 2011, 6(4): 1-11.
[7] 魏传新, 陈洪达, 尹达一.基于交叉簧片柔性铰链的空间微位移机构[J]. 光学精密工程, 2015,23(11): 3168-3175.
Wei Chuan-xin, Chen Hong-da, Yin Da-yi. Spatial compliant micro-displacement magnifying mechanism based on cross-spring flexural pivot[J]. Optics and Precision Engineering, 2015,23(11): 3168-3175.
[8] 马立, 肖金涛, 周莎莎,等. 杠杆式尺蠖压电直线驱动器[J]. 光学精密工程, 2015, 23(1): 184-190.
Ma Li, Xiao Jin-tao, Zhou Sha-sha, et al. Linear lever-type piezoelectric inchworm actuator[J]. Optics and Precision Engineering, 2015, 23(1): 184-190.
[9] Nguyen T T, Goo N S, Nguyen V K, et al. Design, fabrication, and experimental characterization of a flap calve IPMC micropump with a flexibly supported diaphragm[J]. Sensors and Actuators A, 2008, 141(2): 640-648.
[10] Lee S K, Kim K J, Park H C. Design and performance analysis of a novel IPMC-driven micropump[J]. Smart Structures and Materials, 2005, 5759: 439-446.
[11] Mcdaid A J, Aw K C, Haemmerle E, et al. Adaptive tuning of a 2 DoF controller for robust cell manipulation using IPMC actuators[J]. Journal of Micromechanics and Microengineering, 2011, 21(12): 1-11.
[12] Kruusmaa M, Hunt A, Punning A, et al. A linked manipulator with ion-polymer metal composite(IPMC) joints for soft and micromanipulation[C]∥International Conference on Robotics and Automation, Pasadena,CA,2008:3588-3593.
[13] Fu Li-xue, Mcdaid A J, Aw K C. A force compliant surgical robotic tool with IPMC actuator and integrated sensing[C]∥Fourth International Conference on Smart Materials and Nanotechnology in Engineering, Hong Kong,2013: 1-11.
[14] Chang Yi-chu, Kim W J. Aquatic ionic-polymer-metal-composite insectile robot with multi-dof legs[J]. ASME Transactions on Mechatronics, 2013, 18(2): 547-555.
[15] Shi Li-wei, Guo Shu-xiang, Asaka K. A novel multifunctional underwater microrobot[C]∥International Conference on Robotics and Biomimetics, Tianjin,2010: 873-878.
[16] Punning A, Kruusmaa M, Aabloo A. Surface resistance experiments with IPMC sensors and actuators[J]. Sensors and Actuators A, 2007, 133(1): 200-209.
[17] Tadokoro S, Yamagami S, Takamori T, et al. Modeling of Nafion-Pt composites acutators (ICPF) by ionic motion[J]. Smart Material and Structure, 2000, 3987: 92-102.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!