吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 221-227.doi: 10.13229/j.cnki.jdxbgxb201601033
赵刚, 孙壮志, 郭华君, 隋志阳, 李芳, 赵华兴
ZHAO Gang, SUN Zhuang-zhi, GUO Hua-jun, SUI Zhi-yang, LI Fang, ZHAO Hua-xing
摘要: 为提高输出力,设计了一种新型线性驱动单元,首先通过化学沉积镀的方式制备了IPMC材料,采用表层分割等方法制备线性驱动单元模型,建立了疲劳脱落评价方法,并分析了悬臂梁驱动的打卷现象,最后利用IPMC实验测试平台对方波电压下线性驱动单元性能进行研究。结果表明:控制电压小于4 V,长宽比小于3.5,可减少高电压、大尺寸打卷现象;沿运动方向的输出力随电压增加先增大后减小,4 V时最大输出力为2.15×10-2 N,是悬臂梁输出能力的4倍,而输出位移不随电压变化;垂直运动方向的输出力不随电压变化,与悬臂梁输出能力相当,而位移输出随着电压增加先增大后减小,4 V时最大输出位移为41 mm;疲劳脱落分析结果证实了线性驱动单元选取3~4 V电压驱动,性能最佳。
中图分类号:
[1] Shahinpoor M, Kim K. Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimeric sensors, actuators and artificial muscles[J]. Sensor and Actuators A, 2002, 96(2): 125-132. [2] Konyo M, Konishi Y, Tadokoro S,et al. Development of velocity sensor using ionic polymer metal composites[J]. Smart Structures and Materials, 2004, 5385: 307-318. [3] Shahinpoor M. Recent advances in ionic polymer conductor composite materials as distributed nanosensors, nanoactuators and artificial muscles[J]. Smart Structures and Materials, 2005, 5759: 49-63. [4] Yim W, Lee J, Kim K J. An artificial muscle actuator for biomimetic underwater propulsors [J]. Bioinspiration and Biomimetics, 2007, 2(2): 31-41. [5] Chen Z, Um T I, Bart-Smith H. A novel fabricated of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions[J]. Sensors and Actuators A, 2011, 168(1): 131-139. [6] Shahinpoor M. Biomimetic robotic venus flytrap (dionaea muscipula ellis) made with ionic polymer metal composites[J]. Bioinspiration and Biomimetics, 2011, 6(4): 1-11. [7] 魏传新, 陈洪达, 尹达一.基于交叉簧片柔性铰链的空间微位移机构[J]. 光学精密工程, 2015,23(11): 3168-3175. Wei Chuan-xin, Chen Hong-da, Yin Da-yi. Spatial compliant micro-displacement magnifying mechanism based on cross-spring flexural pivot[J]. Optics and Precision Engineering, 2015,23(11): 3168-3175. [8] 马立, 肖金涛, 周莎莎,等. 杠杆式尺蠖压电直线驱动器[J]. 光学精密工程, 2015, 23(1): 184-190. Ma Li, Xiao Jin-tao, Zhou Sha-sha, et al. Linear lever-type piezoelectric inchworm actuator[J]. Optics and Precision Engineering, 2015, 23(1): 184-190. [9] Nguyen T T, Goo N S, Nguyen V K, et al. Design, fabrication, and experimental characterization of a flap calve IPMC micropump with a flexibly supported diaphragm[J]. Sensors and Actuators A, 2008, 141(2): 640-648. [10] Lee S K, Kim K J, Park H C. Design and performance analysis of a novel IPMC-driven micropump[J]. Smart Structures and Materials, 2005, 5759: 439-446. [11] Mcdaid A J, Aw K C, Haemmerle E, et al. Adaptive tuning of a 2 DoF controller for robust cell manipulation using IPMC actuators[J]. Journal of Micromechanics and Microengineering, 2011, 21(12): 1-11. [12] Kruusmaa M, Hunt A, Punning A, et al. A linked manipulator with ion-polymer metal composite(IPMC) joints for soft and micromanipulation[C]∥International Conference on Robotics and Automation, Pasadena,CA,2008:3588-3593. [13] Fu Li-xue, Mcdaid A J, Aw K C. A force compliant surgical robotic tool with IPMC actuator and integrated sensing[C]∥Fourth International Conference on Smart Materials and Nanotechnology in Engineering, Hong Kong,2013: 1-11. [14] Chang Yi-chu, Kim W J. Aquatic ionic-polymer-metal-composite insectile robot with multi-dof legs[J]. ASME Transactions on Mechatronics, 2013, 18(2): 547-555. [15] Shi Li-wei, Guo Shu-xiang, Asaka K. A novel multifunctional underwater microrobot[C]∥International Conference on Robotics and Biomimetics, Tianjin,2010: 873-878. [16] Punning A, Kruusmaa M, Aabloo A. Surface resistance experiments with IPMC sensors and actuators[J]. Sensors and Actuators A, 2007, 133(1): 200-209. [17] Tadokoro S, Yamagami S, Takamori T, et al. Modeling of Nafion-Pt composites acutators (ICPF) by ionic motion[J]. Smart Material and Structure, 2000, 3987: 92-102. |
[1] | 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H∞性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819. |
[2] | 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826. |
[3] | 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843. |
[4] | 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555. |
[5] | 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562. |
[6] | 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190. |
[7] | 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198. |
[8] | 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852. |
[9] | 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858. |
[10] | 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525. |
[11] | 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244. |
[12] | 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875. |
[13] | 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885. |
[14] | 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567. |
[15] | 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143. |
|