吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (6): 1887-1894.doi: 10.13229/j.cnki.jdxbgxb20170769

• • 上一篇    下一篇

结合吸收Markov链和流行排序的显著性区域检测

苏寒松,代志涛(),刘高华,张倩芳   

  1. 天津大学 电气自动化与信息工程学院,天津 300072
  • 收稿日期:2017-07-20 出版日期:2018-11-20 发布日期:2018-12-11
  • 作者简介:苏寒松(1960-),男,教授,博士.研究方向:图像处理、无线通信和光线传感.
  • 基金资助:
    国家自然科学基金项目(61101224)

Saliency region detection combining absorbing Markov chain and manifold ranking

SU Han-song,DAI Zhi-tao(),LIU Gao-hua,ZHANG Qian-fang   

  1. School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072,China
  • Received:2017-07-20 Online:2018-11-20 Published:2018-12-11

摘要:

针对现有显著性检测方法在复杂自然图像下鲁棒性不高的问题,提出了一种结合吸收Markov链和流行排序的显著性检测算法。首先计算灰度图像的熵值得到超像素分割数目,然后分两阶段进行显著性检测。在第1阶段,首先对边缘超像素进行预处理,再使用背景先验进行基于吸收Markov链随机游走的显著性检测;在第2阶段,使用第1阶段计算的区域显著值作为前景查询种子用于流行排序对检测结果进一步优化。在公开数据集ASD和ECSSD上的实验结果表明:与现有显著性检测算法对比,该算法可以准确地突出显著目标,并有效地抑制背景,同时在F-measure等指标上也有很大改善。

关键词: 信息处理技术, 显著性检测, 背景先验, 前景查询种子, 吸收Markov链, 流行排序

Abstract:

Considering the low robustness of existing saliency detection methods in detecting complex nature images, a new saliency detection algorithm is proposed by combining the absorbing markov chain and manifold ranking. First, the entropy of the gray image is calculated to obtain the number of superpixels. Secondly, a two-stage saliency detection is used. In the first stage, the image edge superpixels are pre-processed, and then the first saliency map based on random walk on Absorbing Markov chain was computed by using background prior. In the second stage, the saliency scores computed by the first stage are used as foreground query seeds for manifold ranking in order to further optimize the saliency detection results. Experiments on publicly ASD and ECSSD databases demonstrate that, compared with the existing saliency detection methods, the proposed method can accurately highlight the saliency target, and effectively suppress the background area, while improve the performance evaluation of precision, recall and F-measure values.

Key words: information procession technology, saliency region detection, background prior, foreground query seed, absorbing Markov chain, manifold ranking

中图分类号: 

  • TN919.8

图1

本文算法的基本框架"

图2

本文算法在目标接触边界时的检测效果"

图3

不同算法在ASD数据集上的定性比较"

图4

ASD数据集上的PR曲线"

图5

ASD数据集上的查准率、查全率和F-measure"

图6

本文方法两阶段显著性检测在ASD数据集上的PR曲线"

图7

ECSSD数据集上的PR曲线"

图8

ECSSD数据集上的查准率、查全率和F-measure"

表1

不同算法的平均运行时间"

算法 代码 平均运行时间/s
SR Matlab 0.615
IT Matlab 0.611
GB Matlab+C 0.735
FT C 0.072
SF C 0.202
LR Matlab+C 0.40
RC Matlab 0.752
GC C 0.037
GS C 2.0
AMC Matlab+C 0.195
GMR C 0.149
SO Matlab+C 0.38
本文 Matlab+C 0.235
[1] Borji A, Itti L . State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35:185-207.
doi: 10.1109/TPAMI.2012.89 pmid: 22487985
[2] Borji A, Cheng M M, Jiang H , et al. Salient object detection:a survey[J]. Eprint Arxiv, 2014,16(7):3118-3121.
[3] Li Y, Hou X D, Koch C. The secrets of salient object segmentation [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 280-287.
[4] Christopoulos C, Skodras A, Ebrahimi T . The JPEG2000 still image coding system: an overview[J]. IEEE Transaction on Consumer Electronics, 2000,46(4):1103-1127.
doi: 10.1109/30.920468
[5] Chen T, Cheng M M, Tan P , et al. Sketch2Photo:internet image montage[J]. ACM Transactions on Graphics, 2009,28(5):1-10.
[6] Achanta R, Hemami S, Estrada F. Frequency-tuned salient region detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition,Miami, 2009: 1597-1604.
[7] Yan Q, Xu L, Shi J P, et al. Hierarchical saliency detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Portland, 2013: 1155-1162.
[8] Li X, Li Y, Shen C, et al, Contextual hypergraph modeling for salient object detection [C]//IEEE International Conference on Computer Vision, Sydney, 2013: 3328-3335.
[9] Shen X, Wu Y. A unified approach to salient object detection via low rank matrix recovery [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 853-860.
[10] Perazzi F, Krahenbuhl P, Pritch Y, et al. Saliency filters: contrast based filtering for salient region detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 733-740.
[11] Cheng M M, Mitra N J, Huang X L , et al. Global contrast based salient region detection[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015,37(3):569-582.
doi: 10.1109/TPAMI.2014.2345401 pmid: 26353262
[12] Wei Y C, Wen F, Zhu W J, et al. Geodesic saliency using background priors [C]//European Conference on Computer Vision, Berlin, 2012: 29-42.
[13] Yang C, Zhang L, Lu H, et al. Saliency detection via graph-based manifold ranking [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Portland, 2013,9(4):3166-3173.
[14] Jiang B, Zhang L H, Lu H C , et al. Saliency detection via absorbing Markov chain[J/OL].[2017-07-15]..
[15] Zhang Jian-ming, Sclaroff Stan, Lin Zhe, et al. Minimum barrier salient object detection at 80 FPS [C]//IEEE International Conference on Computer Vision,Santiago, Chile, 2015: 1404-1412.
[16] Zhu W, Liang S, Wei Y, et al. Saliency optimization from robust background detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2814-2821.
[17] Hou X D, Zhang L Q. Saliency detection: a spectral residual approach [C]//IEEE International Conference on Computer Vision and Pattern Recognitions, Minneapolis, 2007: 1-8.
[18] Itti L, Koch C, Niebur E . A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(11):1254-1259.
doi: 10.1109/34.730558
[19] Harel J, Koch C, Perona P . Graph-based visual saliency[J]. Advances in Neural Information Processing System, 2006,19:545-552.
[20] Cheng M M, Warrell J, Lin W Y , et al. Efficient salient region detection with soft image abstraction[DB/OL].[2017-07-16]..
[21] Tong N, Lu H, Xiang R, et al. Salient object detection via bootstrap learning [C]//IEEE International Conference on Computer Vision and Pattern Recognition,Washington DC,USA, 2015: 1884-1892.
[22] Yang J, Yang M H. Top-down visual saliency via joint crf and dictionary learning [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, 2012: 2296-2303.
[23] Radhakrishna A, Appu S, Kevin S , et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120 pmid: 22641706
[24] Tatler B W . The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions[J]. Journal of Vision, 2007,7(14):1-17.
[25] 谢畅, 朱恒亮, 林晓 , 等. 基于对比度优化流行排序的显著性目标检测算法[J]. 计算机应用, 2017,37(3):684-690.
Xie Chang, Zhu Heng-liang, Lin Xiao , et al. Salient target detection algorithm based on contrast optimized manifold ranking[J]. Journal of Computer Applications, 2017,37(3):684-690.
[26] 曹向海, 邓湖明, 黄波 . 背景感知的显著性检测算法[J]. 系统工程与电子设计, 2014,36(8):1668-1672.
doi: 10.3969/j.issn.1001-506X.2014.08.35
Cao Xiang-hai, Deng Hu-ming, Huang Bo . Background aware saliency detection[J]. Systems Engineering and Electronics, 2014,36(8):1668-1672.
doi: 10.3969/j.issn.1001-506X.2014.08.35
[27] 吕建勇, 唐振民 . 一种改进的马尔科夫吸收链显著性目标检测方法[J]. 南京理工大学学报:自然科学版, 2015,39(6):674-679.
doi: 10.14177/j.cnki.32-1397n.2015.39.06.007
Lv Jian-yong, Tang Zhen-min . Improved salient object detection based on absorbing Markov chain[J]. Journal of Nanjing University of Science and Technology(Natural Sciences), 2015,39(6):674-679.
doi: 10.14177/j.cnki.32-1397n.2015.39.06.007
[1] 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985.
[2] 付银娟,李勇,徐丽琴,张昆辉. NLFM⁃Costas射频隐身雷达信号设计及分析[J]. 吉林大学学报(工学版), 2019, 49(3): 994-999.
[3] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[6] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[7] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[8] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[9] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[10] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[11] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[14] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[15] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程平,张海涛,高岩,李俊锋,王洪艳 . ANN在聚丙烯酸酯乳液性质预测中的应用
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[2] 张大庆;何清华;郝鹏;陈欠根 . 液压挖掘机铲斗轨迹跟踪的鲁棒控制[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[3] 董云峰,曲兴田,沈传亮,董景石,吴博达 . 压电直接驱动式伺服阀
[J]. 吉林大学学报(工学版), 2006, 36(05): 678 -0680 .
[4] 徐安,乔向明. 基于更新理论的复杂设备故障率表达[J]. 吉林大学学报(工学版), 2006, 36(03): 359 -0362 .
[5] 詹军. 用于自适应巡航控制的汽车纵向动力学模型的建立[J]. 吉林大学学报(工学版), 2006, 36(02): 157 -0160 .
[6] 文键,厉彦忠,周爱民,张科. 板翅式换热器入口结构的改进[J]. 吉林大学学报(工学版), 2006, 36(02): 177 -0182 .
[7] 吴义华,杨俊峰,何正淼,王砚方. 基于信噪比测量时钟抖动的方法[J]. 吉林大学学报(工学版), 2006, 36(04): 604 -607 .
[8] 杨智君,田地,周斌. 基于NDIS中间层驱动程序的网络监测器[J]. 吉林大学学报(工学版), 2006, 36(02): 224 -0226 .
[9] 蔡莉,王云美. 基于过程观的创业企业价值评估实证研究[J]. 吉林大学学报(工学版), 2006, 36(02): 279 -284 .
[10] 常国峰;郭英男;张纪鹏;唐辉;刘巽俊;许思传. 快速压缩机漏气量的计算方法[J]. 吉林大学学报(工学版), 2007, 37(06): 1247 -1250 .