吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 210-215.doi: 10.13229/j.cnki.jdxbgxb20170812

• 交通运输工程·土木工程 • 上一篇    

基于增大截面法的混凝土加固石拱桥空间受力性能试验分析

张淼1,2(),钱永久1,张方1,2,朱守芹2   

  1. 1. 西南交通大学 土木工程学院,成都 610031
    2. 河北省土木工程诊断、改造与抗灾重点实验室,河北 张家口 075000
  • 收稿日期:2017-09-22 出版日期:2020-01-01 发布日期:2020-02-06
  • 作者简介:张淼(1981-),女,工程师,博士研究生.研究方向:既有桥梁评估、诊断与加固理论.E-mail:swjtuzm@qq.com
  • 基金资助:
    国家自然科学基金项目(51778532)

Experimental analysis of spatial force performance of concrete-reinforced stone arch bridge based on enlarged section method

Miao ZHANG1,2(),Yong-jiu QIAN1,Fang ZHANG1,2,Shou-qin ZHU2   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    2. Hebei Key Laboratory of Diagnosis Reconstruction and Anti?disaster of Civil Engineering, Zhangjiakou 075000, China
  • Received:2017-09-22 Online:2020-01-01 Published:2020-02-06

摘要:

针对传统混凝土受力试验分析方法中存在拟合度低、复杂度高的问题,提出了基于增大截面法的混凝土加固石拱桥空间受力性能试验分析方法。将混凝土等级确定为C30,选取150 mm×150 mm×150 mm立方体完成混凝土浇筑,采用带肋钢筋、直径为14 mm的HRB335级纵向受拉钢筋、8 mm的HPB级箍筋作为钢筋构件设计材料。确定混凝土和钢筋材料后,设置混凝土加固石拱桥试件形状和尺寸,并将试件分组,根据制作过程完成试件制作。依据试件设计与制作,对加固截面进行网格与条带划分,输入横纵方向网格数量和加固截面条带数量,利用低周反复加载测试混凝土加固石拱桥空间受力性能,计算任意单元形心位置混凝土应变等参数。增加截面距离轴心向力比较近的一侧混凝土应变,同时进行下一增步相关计算,直到距离轴向力比较近的混凝土压应变值比极限压应变值大时,输出满足预设条件的混凝土加固石拱桥空间受力极限值等参数,完成试验。试验结果表明,本文方法的拟合度高,约达到98%,且运行复杂度低,具有可行性。

关键词: 桥梁工程, 增大截面法, 混凝土, 石拱桥, 受力性能

Abstract:

There exist some problems in traditional analysis method of concrete stress test, such as low fitting degree and high complexity. To solve these problems, an experimental analysis method of spatial stress performance of concrete reinforced stone arch bridge based on enlarged section method is proposed. First, the concrete grade is determined as C30, and the concrete is poured with 150 mm×150 mm×150 mm cube. Ribbed steel bars, 14 mm HRB335 longitudinal tension steel bars and 8 mm HPB stirrups are used as design materials for steel members. Then, the shape and size of concrete reinforced stone arch bridge specimens are set up, the specimens are grouped, and the specimens are made according to the manufacturing process. Third, according to the design and fabrication of specimens, the reinforcement section is divided into meshes and strips, the number of meshes in the transverse and longitudinal directions and the number of strips in the reinforcement section are input. Fourth, the spatial mechanical properties of the reinforced stone arch bridge are tested by low-cycle repeated loading, and the concrete strain at the center of any element is calculated. Fifth, the concrete strain is increased on one side of the section near the axial force, and the next step related calculation is carried out until the concrete compressive strain value near the axial force is larger than the ultimate compressive strain value. Finally, the parameters that meet the preset conditions are outputted, such as the ultimate value of the space stress of the concrete reinforced stone arch bridge, and the test is completed. The experimental results show that the method has high fitting degree, about 98%, low running complexity and feasibility.

Key words: bridge engineering, increased section method, concrete, stone arch bridge, force performance

中图分类号: 

  • TU391

表1

立方体抗压强度测试结果"

项 目 编号
1 2 3
试验荷载值/kN 698 715 675
试块强度值/MPa 32.0 32.5 30.0

图1

试件形状与尺寸示意图"

表2

试件类别"

编号 植筋锚固长度 形式 其他
J?1 基本试件
J?2 15d 一字 基本试件
J?3 15d Z字 加固试件

图2

不同方法理论值与实际值拟合度对比"

图3

不同方法运行复杂度对比"

1 杨根杰 . 单拱肋预应力混凝土梁拱组合桥受力性能分析[J]. 铁道工程学报, 2017, 34(6):37-42.
Yang Gen-jie . Analysis of mechanical property of single arch rib prestressed concrete beam arch combination bridge[J]. Journal of Railway Engineering Society, 2017, 34(6):37-42.
2 杨勇, 赵登攀, 邓辉 . 内置钢管高强混凝土芯柱的十字形异形柱耐火性能试验研究[J]. 工业建筑, 2016, 46(2):120-124.
Yang Yong , Zhao Deng-pan , Deng Hui . Experimental research on fire-resisting performance of cross-shaped composite column with high-strength concrete-filled steel tubular (CFST) core column[J]. Industrial Construction, 2016, 46(2):120-124.
3 陈宗平, 陈宇良 . 三向受压状态下再生混凝土的变形性能及损伤分析[J]. 应用力学学报, 2016, 33(5):799-805.
Chen Zong-ping , Chen Yu-liang . Experimental study on establishment of a new constitutive model of rock damage[J]. Chinese Journal of Applied Mechanics, 2016, 33(5):799-805.
4 王广勇, 张东明, 刘庆,等 . 基于梁单元受火后型钢(钢筋)混凝土结构受力性能分析[J]. 建筑结构学报, 2016, 37(11):38-46.
Wang Guang-yong , Zhang Dong-ming , Liu Qing , et al . A numerical model for post-fire performance of reinforced concrete and steel reinforced concrete structures based on beam elements[J]. Journal of Building Structures, 2016, 37(11):38-46.
5 王新堂, 童海伦, 徐金灿 . 薄壁钢桁架-轻骨料混凝土叠合板火灾后受力性能试验研究[J]. 自然灾害学报, 2016, 25(2):127-138.
Wang Xin-tang , Tong Hai-lun , Xu Jin-can . Experimental study on post-fire mechanical property of thin-walled steel truss-ceramsite concrete laminated slabs[J]. Journal of Natural Disasters, 2016, 25(2):127-138.
6 周乐, 王晓初, 白云皓,等 . 负载下外包钢筋混凝土加固轴心受压钢柱受力性能研究[J]. 工程力学, 2017, 34(1):204-215.
Zhou Le , Wang Xiao-chu , Bai Yun-hao , et al . Research on mechanical properties of axially loaded steel columns reinforced by outsourcing reinforced concrete while under load[J]. Engineering Mechanics, 2017, 34(1):204-215.
7 孙明德, 高日, 高明昌, 等 . 高强钢筋活性粉末混凝土梁抗弯性能试验研究[J]. 桥梁建设, 2017, 47(2):25-30.
Sun Ming-de , Gao Ri , Gao Ming-chang , et al . Experimental study of flexural behavior of reactive powder concrete beams reinforced with high-strength steel bars[J]. Bridge Construction, 2017, 47(2):25-30.
8 杨立军, 邓志恒, 冯超,等 . 桁架式钢骨混凝土梁-钢骨混凝土柱梁柱组合构件抗震性能试验研究[J]. 振动与冲击, 2016, 35(22):17-23.
Yang Li-jun , Deng Zhi-heng , Feng Chao , et al . Experiments on seismic behaviors of beam-column combined components with steel reinforced concrete column-reinforced concrete beam encased steel truss[J]. Journal of Vibration and Shock, 2016, 35(22):17-23.
9 王卫永, 宋柯岩, 刘界鹏 . 高温下钢管约束型钢混凝土柱的受力性能[J]. 土木建筑与环境工程, 2017, 39(3):58-66.
Wang Wei-yong , Song Ke-yan , Liu Jie-peng . Fire performance of circular tubed steel reinforced concrete columns[J]. Journal of Civil, Architectural and Environmental Engineering, 2017, 39(3):58-66.
10 王晶华 . 反复荷载下建筑用劲性混凝土梁柱节点受力的有限元分析[J]. 科技通报, 2017, 33(1):178-181.
Wang Jing-hua . Finite element analysis building stiffened concrete beam column joint stress strength in cyclic loading[J]. Bulletin of Science and Technology, 2017, 33(1):178-181.
[1] 钟春玲,梁东,张云龙,王静. 体外预应力加固简支梁自振频率计算[J]. 吉林大学学报(工学版), 2019, 49(6): 1884-1890.
[2] 贾毅,赵人达,王永宝,李福海. 多跨长联连续梁桥粘滞阻尼器参数敏感性分析[J]. 吉林大学学报(工学版), 2019, 49(6): 1871-1883.
[3] 杨德磊,童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J]. 吉林大学学报(工学版), 2019, 49(6): 1891-1899.
[4] 狄胜同,贾超,乔卫国,李康,童凯. 橡胶集料混凝土细观损伤特性的加载速率效应[J]. 吉林大学学报(工学版), 2019, 49(6): 1900-1910.
[5] 白伦华,沈锐利,张兴标,王路. 自锚式悬索桥的面内稳定性[J]. 吉林大学学报(工学版), 2019, 49(5): 1500-1508.
[6] 万世成,黄侨,关健,郭赵元. 预应力碳纤维板加固钢⁃混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1114-1123.
[7] 赵金钢,张明,占玉林,谢明志. 基于塑性应变能密度的钢筋混凝土墩柱损伤准则[J]. 吉林大学学报(工学版), 2019, 49(4): 1124-1133.
[8] 梁宁慧,缪庆旭,刘新荣,代继飞,钟祖良. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报(工学版), 2019, 49(4): 1144-1152.
[9] 于天来,李海生,黄巍,王思佳. 预应力钢丝绳加固钢筋混凝土梁桥抗剪性能[J]. 吉林大学学报(工学版), 2019, 49(4): 1134-1143.
[10] 李万恒,申林,王少鹏,赵尚传. 基于多阶段分区域动力测试的桥梁结构损伤评估[J]. 吉林大学学报(工学版), 2019, 49(3): 773-780.
[11] 惠迎新,毛明杰,刘海峰,张尚荣. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1725-1734.
[12] 宋军, 石雪飞, 阮欣. 大体积混凝土热学参数识别的优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1418-1425.
[13] 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1426-1435.
[14] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[15] 宫亚峰, 何钰龙, 谭国金, 申杨凡. 三跨独柱连续曲线梁桥抗倾覆稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!