吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 796-802.doi: 10.13229/j.cnki.jdxbgxb20171132

• 论文 • 上一篇    下一篇

硅片自旋转磨削中基于力的微接触机理

任庆磊, 魏昕, 谢小柱, 胡伟   

  1. 广东工业大学 机电工程学院,广州 510006;
  • 收稿日期:2017-11-22 出版日期:2018-05-20 发布日期:2018-05-20
  • 作者简介:任庆磊(1981-),男,博士研究生.研究方向:超精密加工技术.E-mail:15920179558@139.com
  • 基金资助:
    国家自然科学基金项目(U0734008); 广东省自然科学基金项目(8151009001000048); 广东工业大学校青年基金项目(082042).

Micro contact mechanism based on force in self rotation grinding of silicon wafer

REN Qing-lei, WEI Xin, XIE Xiao-zhu, HU Wei   

  1. School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2017-11-22 Online:2018-05-20 Published:2018-05-20

摘要: 建立了杯型金刚石砂轮稳定延性域磨削过程中砂轮微单元与硅片的微接触力学模型,采用力分解法研究了其自旋转磨削微观作用机理。法向分解分别运用接触力学中的赫兹理论和“空腔模型”理论分析得出硅片上对应弹性和塑性阶段的载荷和应力分布情况,以及砂轮微单元上相应的应力分布情况;切向分解运用微观摩擦学理论分析得出滑动摩擦力以及法、切向合成微接触总应力的情况。分析与试验对比结果证明了本文方法有效,可为硅片自旋转磨削机理研究提供理论支撑。

关键词: 机械制造及自动化, 自旋转磨削, 微接触, 硅片, 砂轮微单元

Abstract: Self rotating grinding with cup type diamond wheel is a typical ultra precision grinding process for silicon wafer. In this paper, a mechanical model of the micro contact between the wheel micro unit and silicon wafer was established for the stable ductile grinding process, and the mechanism of self rotating grinding was studied using force decomposition method. On the normal direction, the load and stress distribution of the corresponding elastic and plastic stages were obtained using the Hertz theory and the cavity model respectively. On the tangential direction, the sliding friction force was obtained using micro tribology theory. The load in the two directions was synthesized and the total stress condition was obtained. The analysis results were verified by corresponding experiment and simulation.

Key words: mechanical manufacture and automation, self rotating grinding, micro contact, silicon wafer, wheel micro unit

中图分类号: 

  • TG580.1
[1] Markku T, Teruaki M, Veli-Matti A, et al.Handbook of Silicon based MEMS Materials and Technologies[M]. 2nd ed. London:William Andrew,2015.
[2] Pei Z J, Strasbaugh A.Fine grinding of silicon wafers[J]. International Journal of Machine Tools and Manufacture,2001,41(5):659-672.
[3] Matsui S.An experimental study on the grinding of silicon wafer-the wafer rotation grinding method[J]. Bull Japan Soc Prec Eng,1988,22(4):295-300.
[4] Zhou L,Tian Y B,Huang H,et al.A study on the diamond grinding of ultra-thin silicon wafers[J]. Journal of Engineering Manufacture,2012,226(1):66-75.
[5] Pei Z J,Fisher G R, Milind B, et al.A grinding-based manufacturing method for silicon wafers: an experimental investigation[J]. International Journal of Machine Tools & Manufacture,2005,45(10):1140-1151.
[6] 康仁科,田业冰,郭东明,等. 大直径硅片超精密磨削技术的研究与应用现状[J]. 金刚石与磨料磨具工程,2003,136(4):13-18.
Kang Ren-ke,Tian Ye-bing,Guo Dong-ming, et al.Present status of research and application in ultra-precision grinding technology of large-scale silicon wafers[J]. Diamond & Abrasives Engineering,2003,136(4):13-18.
[7] Yan J W,Tooru A,Hirofumi H,et al.Fundamental inverstigation of subsurface damage in single crystalline silicon caused by diamond machining[J]. Precision Engineering,2009,33:378-386.
[8] 霍凤伟. 硅片延性域磨削机理研究[D]. 大连:大连理工大学机械工程学院,2006.
Huo Feng-wei.Study on the mechanism of ductile mode grinding of silicon wafers[D]. Dalian: School of Mechanical Engineering, Dalian University of Technology,2006.
[9] Johnson K L.Contact Mechanics[M]. London:Cambridge University Press,1985.
[10] 张赜文. 单压头曲率半径对单晶硅和氮化碳薄膜径向纳动损伤的影响[D]. 成都:西南交通大学机械工程学院,2010.
Zhang Ze-wen.Effect of equivalent radius of indenter on the radial nanofretting damage of monocrystal silicon and α-CNx film[D]. Chengdu: School of Mechanical Engineering,Southwest Jiaotong University,2010.
[11] 任庆磊,魏昕,谢小柱,等. 硅片自旋转磨削中基于作用力的微观接触仿真研究[J]. 金刚石与磨料磨具工程,2016,36(2):19-23.
Ren Qing-lei,Wei Xin,Xie Xiao-zhu, et al.Simulation of micro contact based on interacting force in self rotating grinding of silicon wafer[J]. Diamond & Abrasives Engineering,2016,36(2):19-23.
[1] 于化东, 顾莉栋, 朴承镐, 耿振野, 于正林, 轩洋. 用切线法数控加工高次非球面[J]. 吉林大学学报(工学版), 2012, 42(02): 354-359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭孔辉;王爽;丁海涛;张建伟 . 后悬架非对称式橡胶衬套弹性耦合特性[J]. 吉林大学学报(工学版), 2007, 37(06): 1225 -1228 .
[2] 何磊,宗长富,田承伟,吴仁军,张太武. 线控转向汽车直流电机的故障诊断与容错控制[J]. 吉林大学学报(工学版), 2011, 41(03): 608 -612 .
[3] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[4] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[5] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[6] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[7] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[8] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[9] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[10] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .