吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 237-246.doi: 10.13229/j.cnki.jdxbgxb20180759

• 计算机科学与技术 • 上一篇    下一篇

基于新型休眠模式的云虚拟机分簇调度策略及性能优化

金顺福1(),郄修尘1,武海星1,霍占强2()   

  1. 1. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004
    2. 河南理工大学 计算机科学与技术学院,河南 焦作 454000
  • 收稿日期:2018-06-26 出版日期:2020-01-01 发布日期:2020-02-06
  • 通讯作者: 霍占强 E-mail:jsf@ysu.edu.cn;hzq@hpu.edu.cn
  • 作者简介:金顺福(1966-),女,教授,博士生导师.研究方向:计算机网络性能分析,排队论理论与应用.E-mail:jsf@ysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61872311);河北省自然科学基金项目(F2017203141)

Clustered virtual machine allocation strategy in cloud computing based on new type of sleep-mode and performance optimization

Shun-fu JIN1(),Xiu-chen QIE1,Hai-xing WU1,Zhan-qiang HUO2()   

  1. 1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
    2. College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2018-06-26 Online:2020-01-01 Published:2020-02-06
  • Contact: Zhan-qiang HUO E-mail:jsf@ysu.edu.cn;hzq@hpu.edu.cn

摘要:

针对云数据中心数量增加与规模扩张中存在的云计算能耗控制问题,引入了唤醒阈值与休眠定时器双重控制的周期性休眠模式,提出了一种云虚拟机分簇调度策略。云数据中心的虚拟机分为2个模块:模块I中的虚拟机时刻保持唤醒;模块II中的虚拟机则根据云数据中心的工作负载轻重在休眠状态与唤醒状态间切换。通过构建具有双速率与部分服务台异步(N,T)策略多重休假的排队模型,运用矩阵几何解方法,从云请求平均时延与系统能量节省率等方面评估云虚拟机分簇调度策略的系统性能。综合理论分析结果与仿真统计结果,验证了云虚拟机分簇调度策略的有效性。从经济学角度出发,构建了系统成本函数,引入了An混沌映射机制与非线性递减惯性权值策略,改进了粒子群智能优化算法,给出了策略参数的优化方案,实现了系统响应性能与节能效果之间的合理平衡。

关键词: 计算机应用, 云计算, 云数据中心, 虚拟机调度策略, 休眠模式, 排队模型, 粒子群优化算法

Abstract:

With the constant increase in the number and the scale of cloud data centers, the energy consumption control in cloud computing is becoming increasingly apparent. By introducing a periodic sleep mode with double control of wake up threshold and sleep timer, we propose a clustered virtual machine (VM) allocation strategy. All the VMs in a cloud data center are divided into two modules: The VMs in Module I are always awake, while the VMs in Module II will switch between sleep state and awake state according to the workload of the cloud data center. By establishing a queueing model with double service rates and (N,T) policy asynchronous multiple vacations of partial servers, and using the method of a matrix geometric solution, we evaluate the performance of the clustered VM allocation strategy in terms of average latency of cloud requests and energy saving rate of the system. Theoretical analysis results and simulation results verify the effectiveness of the proposed clustered VM allocation strategy. By constructing a system cost function from the perspective of economics, introducing an An chaotic mapping mechanism and a nonlinear decreasing inertia weight strategy to the Particle Swarm Optimization (PSO) algorithm, we optimize the strategy parameters to achieve a reasonable balance between the response performance and the energy efficiency of the system.

Key words: computer application, cloud computing, cloud data centers, virtual machine allocation strategy, sleep-mode, queueing model, particle swarm optimization(PSO) algorithm

中图分类号: 

  • TP393

图1

虚拟机的工作流程"

图2

云请求平均时延的变化趋势"

图3

系统能量节省率的变化趋势"

表2

模块II虚拟机数量与休眠参数的联合优化结果"

唤醒阈值 N 优化组合 ( d * , θ * ) 最小成本函数 F *
5 (22, 0.000 1) 4.877 9
15 (22, 0.000 2) 6.468 5

25

35

(21, 0.025 3)

(21, 0.027 5)

7.180 2

7.198 1

45 (21, 0.027 6) 7.199 1
1 Hintemann R , Clausen J . Green cloud? the current and future development of energy consumption by data centers , networks and end-user devices[C]∥Proceedings of the 4th International Conference on ICT for Sustainability, Amsterdam, The Netherlands, 2016: 109-115.
2 Jin X , Zhang F , Vasilakos A , et al . Green data centers: a survey, perspectives, and future directions [DB/OL].[2018-05-23]. https:∥arxiv.org/pdf/1608.00687v1.pdf.
3 Singh S , Chana I . Resource provisioning and scheduling in clouds: QoS perspective[J]. Journal of Supercomputing, 2016, 72(3): 926-960.
4 Hasan S , Kouki Y , Ledoux T , et al . Exploiting renewable sources: when green SLA becomes a possible reality in cloud computing[J]. IEEE Transactions on Cloud Computing, 2017, 5(2): 249-262.
5 Arianyan E , Taheri H , Khoshdel V . Novel fuzzy multi objective DVFS-aware consolidation heuristics for energy and SLA efficient resource management in cloud data centers[J]. Journal of Network & Computer Applications, 2017, 78: 43-61.
6 Son J , Dastjerdi A , Calheiros R , et al . SLA-aware and energy-efficient dynamic overbooking in SDN-based cloud data centers[J]. IEEE Transactions on Sustainable Computing, 2017, 2(2): 76-89.
7 Hosseinimotlagh S , Khunjush F , Samadzadeh R . SEATS: Smart energy-aware task scheduling in real-time cloud computing[J]. Journal of Supercomputing, 2015, 71(1): 45-66.
8 Fan L , Gu C , Qiao L , et al . GreenSleep: A multi-sleep modes based scheduling of servers for cloud data center[C]∥Proceedings of the 3rd International Conference on Big Data Computing and Communications, Chengdu, China, 2017: 368-375.
9 Duan L , Zhan D , Hohnerlein J . Optimizing cloud data center energy efficiency via dynamic prediction of CPU idle intervals[C]∥Proceedings of the 8th IEEE International Conference on Cloud Computing, Vancouver, Canada, 2015: 985-988.
10 Chou C , Wong D , Bhuyan L . DynSleep: Fine-grained power management for a latency-critical data center application[C]∥Proceedings of the International Symposium on Low Power Electronics and Design, San Francisco, United States, 2016: 212-217.
11 Luo J , Zhang S , Yin L , et al . Dynamic flow scheduling for power optimization of data center networks[C]∥Proceedings of the 5th International Conference on Advanced Cloud and Big Data, Shanghai, China, 2017: 57-62.
12 Paxson V , Floyd S . Wide-area traffic: the failure of Poisson modeling[J]. Transactions on Networking, 1995, 3(3): 226-244.
13 Tian N , Zhang Z . Vacation Queueing Models: Theory and Applications[M]. New York: Springer, 2006.
14 Latouche G , Ramaswami V . Introduction to Matrix Analytic Methods in Stochastic Modeling[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1999.
15 金顺福,姚兴华,霍占强 .非理想感知下动态信道绑定策略性能[J]. 吉林大学学报:工学版,2016,46(5): 1667-1674.
Jin Shun-fu , Yao Xing-hua , Huo Zhan-qiang . Performance of the dynamic channel bonding strategy with imperfect channel sensing[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(5): 1667-1674.
16 Rahmat-Samii Y , Gies D , Robinson J . Particle swarm optimization (PSO): a novel paradigm for antenna designs[J]. URSI Radio Science Bulletin, 2017, 76(3): 14-22.
17 Guedria N . Improved accelerated PSO algorithm for mechanical engineering optimization problems[J]. Applied Soft Computing, 2016, 40: 455-467.
[1] 陈蔓,钟勇,李振东. 隐低秩结合低秩表示的多聚焦图像融合[J]. 吉林大学学报(工学版), 2020, 50(1): 297-305.
[2] 张笑东,夏筱筠,吕海峰,公绪超,廉梦佳. 大数据网络并行计算环境中生理数据流动态负载均衡[J]. 吉林大学学报(工学版), 2020, 50(1): 247-254.
[3] 王晓辉,吴禄慎,陈华伟. 基于法向量距离分类的散乱点云数据去噪[J]. 吉林大学学报(工学版), 2020, 50(1): 278-288.
[4] 邓钧忆,刘衍珩,冯时,赵荣村,王健. 基于GSPN的Ad⁃hoc网络性能和安全平衡[J]. 吉林大学学报(工学版), 2020, 50(1): 255-261.
[5] 王铁君,王维兰. 基于本体的唐卡图像标注方法[J]. 吉林大学学报(工学版), 2020, 50(1): 289-296.
[6] 李雄飞,王婧,张小利,范铁虎. 基于SVM和窗口梯度的多焦距图像融合方法[J]. 吉林大学学报(工学版), 2020, 50(1): 227-236.
[7] 王洪雁,邱贺磊,郑佳,裴炳南. 光照变化下基于低秩稀疏表示的视觉跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(1): 268-277.
[8] 车翔玖,刘华罗,邵庆彬. 基于Fast RCNN改进的布匹瑕疵识别算法[J]. 吉林大学学报(工学版), 2019, 49(6): 2038-2044.
[9] 周炳海,吴琼. 考虑工具和空间约束的机器人装配线平衡优化[J]. 吉林大学学报(工学版), 2019, 49(6): 2069-2075.
[10] 赵宏伟,王鹏,范丽丽,胡黄水,刘萍萍. 相似性保持实例检索方法[J]. 吉林大学学报(工学版), 2019, 49(6): 2045-2050.
[11] 沈军,周晓,吉祖勤. 服务动态扩展网络及其结点系统模型的实现[J]. 吉林大学学报(工学版), 2019, 49(6): 2058-2068.
[12] 周柚,杨森,李大琳,吴春国,王岩,王康平. 基于现场可编程门电路的人脸检测识别加速平台[J]. 吉林大学学报(工学版), 2019, 49(6): 2051-2057.
[13] 李宾,周旭,梅芳,潘帅宁. 基于K-means和矩阵分解的位置推荐算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1653-1660.
[14] 李雄飞,宋璐,张小利. 基于协同经验小波变换的遥感图像融合[J]. 吉林大学学报(工学版), 2019, 49(4): 1307-1319.
[15] 刘元宁,刘帅,朱晓冬,霍光,丁通,张阔,姜雪,郭书君,张齐贤. 基于决策粒子群优化与稳定纹理的虹膜二次识别[J]. 吉林大学学报(工学版), 2019, 49(4): 1329-1338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!