吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 268-277.doi: 10.13229/j.cnki.jdxbgxb20191138

• 交通运输工程·土木工程 • 上一篇    

RC框架⁃抗震墙并联结构体系拟静力试验

许卫晓1,2(),程扬1,2,杨伟松1,2,鞠佳昌1,2,于德湖1,2   

  1. 1.青岛理工大学 土木工程学院,山东 青岛 266033
    2.青岛理工大学 蓝色经济区工程建设与安全协同创新中心,山东 青岛 266033
  • 收稿日期:2019-12-15 出版日期:2021-01-01 发布日期:2021-01-20
  • 作者简介:许卫晓(1988-),男,副教授,博士. 研究方向:结构抗震.E-mail:wxgodspeed@163.com
  • 基金资助:
    山东省重点研发计划项目(2018GSF120004);中国博士后科学基金项目(2019M652344);山东省自然科学基金项目(ZR2020ME246);青岛市应用基础研究计划项目(19-6-2-8-cg);山东省“双一流”建设工程-土木

Quasi-static test of RC frame-seismic wall dual structural system

Wei-xiao XU1,2(),Yang CHENG1,2,Wei-song YANG1,2,Jia-chang JU1,2,De-hu YU1,2   

  1. 1.School of Civil Engineering,Qingdao University of Technology,Qingdao 266033,China
    2.Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone,Qingdao University of Technology,Qingdao 266033,China
  • Received:2019-12-15 Online:2021-01-01 Published:2021-01-20

摘要:

为研究RC框架-抗震墙并联结构体系中,抗震墙作为“功能集成”与“功能分离”两种形式下结构的抗震性能,进行了2个缩尺比为1∶3的单层两跨的框架-抗震墙试件拟静力试验,分别研究抗震墙主要参与抗侧工作承担小部分重力荷载,与抗震墙既参与抗侧工作又承担重力荷载时试件的裂缝开展与破坏、滞回性能、刚度退化、耗能能力、延性等抗震性能。同时,利用ABAQUS软件对试验试件进行模拟,得到了与试验数据较为吻合的结果。研究表明,当抗震墙的承重功能与抗侧功能基本分离时,结构具有更好的延性、耗能能力与损伤发展过程。

关键词: 土木工程, RC框架结构, 并联结构体系, 功能分离, 拟静力试验

Abstract:

In order to study the seismic performance of two different forms of structures, i.e. "functional integration" and "functional separation" in the Reinforce Concrete (RC) frame-seismic wall dual structure system, quasi-static tests of two 1/3 scale frame-seismic wall specimens with two single-story and two-bay were carried out. The damage development, hysteretic behavior, stiffness degradation, energy dissipation capacity, ductility and other seismic behaviors of the seismic wall were investigated as the wall mainly bears the lateral resistance but bears a small part of the vertical load, and as the wall bears both the lateral resistance and the vertical load. The performance of the specimens was also studied by ABAQUS finite element software simulation, and the results are consistent with the test results.The results of this study show that the structure has better ductility, energy dissipation capacity and damage development process when the load-bearing function and the anti-lateral function of the seismic wall are separated.

Key words: civil engineering, RC frames, dual structural system, functional separation, quasi-static test

中图分类号: 

  • TU375.4

图1

结构平面图"

图2

试件模型尺寸"

图3

试验模型设计参数"

表1

钢筋力学材料性能参数"

钢筋直径/mm屈服强度/MPa极限强度/MPa
6452622
8414556

图4

试件模型加载受力"

图5

试验加载程序"

图6

试验模型仪器布置图"

图7

梁破坏形态"

图8

抗震墙破坏形态"

图9

试件滞回曲线"

图10

试件骨架曲线"

图11

试件刚度退化"

表2

试件的特征点及延性系数"

参数FW1FW2
开裂位移/mm1.981.98
开裂荷载/kN50.7353.69
屈服位移/mm9.999.14
屈服荷载/kN151.07155.22
极限位移/mm2519.83
极限荷载/kN182.39182.55
破坏位移/mm34.1025.34
破坏荷载/kN155.03155.17
延性系数3.412.77

图12

试件耗能情况"

表3

试件耗能能力"

试件

编号

耗能能力总耗能
屈服极限破坏
FW1592.003370.784531.8623397.17
FW2735.762734.253057.1017421.10

图13

往复加载时的单轴应力应变关系"

图14

滞回曲线对比"

图15

骨架曲线对比"

1 叶列平, 陆新征, 赵世春, 等. 框架结构抗地震倒塌能力的研究:汶川地震极震区几个框架结构震害案例分析[J]. 建筑结构学报, 2009, 30(6): 67-76.
Ye Lie-ping, Lu Xin-zheng, Zhao Shi-chun, et al. Seismic collapse resistance of RC frame structures: case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchun Earthquake[J]. Journal of Building Structures, 2009, 30(6): 67-76.
2 陆新征, 林旭川, 田源, 等. 汶川、芦山、鲁甸地震极震区地面运动破力对比及其思考[J]. 工程力学, 2014, 31(10): 1-7, 20.
Lu Xin-zheng, Lin Xu-chuan, Tian Yuan, et al. Comparison and discussion on destructive power of the ground motions recorded in the hardest-hit regions of Wenchuan, Lushan and Ludian earthquakes[J]. Engineering Mechanics, 2014, 31(10): 1-7, 20.
3 许卫晓. 阶梯墙框架结构抗震性能及设计方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2014.
Xu Wei-xiao. Study on the seismic performance and design of stepped wall-frame structure[D]. Harbin: Institute of Engineering Mechanics,CEA, 2014.
4 陈以一, 王伟, 赵宪忠. 钢结构体系中节点耗能能力研究进展与关键技术[J]. 建筑结构学报, 2010, 31(6): 81-88.
Chen Yi-yi, Wang Wei, Zhao Xian-zhong. Development and key technical issues on energy dissipation capacity of joints in steel structures[J]. Journal of Building Structures, 2010, 31(6): 81-88.
5 Architectural Institute of Japan. Evaluation Procedure for Performance-based Seismic Design of Buildings-calculation of rResponse and Limit Strength, Energy Balance Based Seismic Resistant Design, Time History Response Analysis[M]. Tokyo, Japan:Architectural Institute of Japan, 2009.
6 Lin P C, Takeuchi T, Matsui R. Optimal design of multiple damped-outrigger system incorporating buckling-restrained braces[J]. Engineering Structures, 2019, 194: 441-457.
7 Genna F. On the sensitivity of finite element results in the calculation of the lateral thrust for all-steel buckling-restrained braces[J]. Engineering Structures, 2019, 194: 66-76.
8 潘鹏, 邓开来, 胥晓光, 等. GFRP-钢屈曲约束支撑力学性能试验研究[J]. 土木工程学报, 2014, 47(12): 1-8.
Pan Peng, Deng Kai-lai, Xu Xiao-guang, et al. Experimental study on mechanical behavior of GFRP-steel buckling-restrained braces[J]. China Civil Engineering Journal, 2014, 47(12): 1-8.
9 Ajrab J J, Pekcan G, Mander J B. Rocking wall-framestructures with supplemental tendon systems[J]. Journal of Structural Engineering, 2004, 130(6): 895-903.
10 曲哲, 和田章, 叶列平, 等. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32(9): 11-19.
Qu Zhe, WADA Akira, Ye Lie-ping, et al. Seismic retrofit of frame structures using rocking wall system[J]. Journal of Building Structures, 2011, 32(9): 11-19.
11 张富文, 李向民, 许清风, 等. 框架-摇摆墙结构抗震性能试验研究[J]. 建筑结构学报, 2015, 36(8): 73-81.
Zhang Fu-wen, Li Xiang-min, Xu Qing-feng, et al. Experimental study on seismic behavior of frame-rocking wall structure[J]. Journal of Building Structures, 2015, 36(8): 73-81.
12 陈以一. 功能集成型结构的抗震设计[C]∥第十一届中日建筑结构技术交流会, 北京, 2015: 303-304.
13 国明超, 栾曙光, 鞠杨, 等. 钢筋混凝土带翼墙短柱抗震性能研究[J]. 建筑结构学报, 1996, 17(3): 32-42.
Guo Ming-chao, Luan Shu-guang, Ju Yang, et al. Study on seismic behavior of reinforced concrete short column with wing wall[J]. Journal of Building Structures, 1996, 17(3): 32-42.
14 张鹏程, 袁兴仁. 框架结构增设支撑与增设翼墙抗震加固方案对比[J]. 土木工程学报, 2010, 43(): 442-446.
Zhang Peng-cheng, Yuan Xing-ren. Steel brace and wing-wall applicating for seismic strengthening of frame building[J]. China Civil Engineering Journal, 2010, 43(Sup.1): 442-446.
15 张令心, 王财权, 刘洁平. 翼墙加固方法对框架结构抗震性能的影响分析[J]. 土木工程学报, 2012, 45(): 16-21.
Zhang Ling-xin, Wang Cai-quan, Liu Jie-ping. Analysis of the influence on structural seismic capability by wing wall strengthening method[J]. China Civil Engineering Journal, 2012, 45(Sup.2): 16-21.
16 Yang Wei-song, Guo Xun, Xu Wei-xiao, et al. Wing walls for enhancing the seismic performance of reinforced concrete frame structures[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(2): 411-423.
17 熊仲明, 史庆轩, 王社良, 等. 钢筋混凝土框架-剪力墙模型结构试验的滞回反应和耗能分析[J]. 建筑结构学报, 2006, 27(4): 89-95.
Xiong Zhong-ming, Shi Qing-xuan, Wang She-liang, et al. Hysteretic response and energy dissipation of a model frame-shear wall structure[J]. Journal of Building Structures, 2006, 27(4): 89-95.
18 Xu Wei-xiao, Sun Jing-jiang, Yang Wei-song, et al. Shaking table comparison test and associate study of stepped wall-frame structure[J]. Earthquake Engineering and Earthquake Vibration, 2014, 13(3): 471-485.
19 杨伟松, 郭迅, 许卫晓, 等. 翼墙-框架结构振动台试验研究及有限元分析[J]. 建筑结构学报, 2015, 36(2): 96-103.
Yang Wei-song, Guo Xun, Xu Wei-xiao, et al. Shaking table test and finite element analysis of wing wall-frame structure[J]. Journal of Building Structures, 2015, 36(2): 96-103.
20 Qu Zhe. Predicting nonlinear response of an RC bridge pier subject to shake table motions[C]∥The 9th International Conference on Urban Earthquake Engineering(9CUEE), Tokyo, Japan, 2012: 1717-1724.
21 庄茁, 由小川, 廖剑辉, 等. 基于ABAQUS的有限元分析和应用[M]. 北京: 清华大学出版社, 2009.
[1] 刘柳,冯卫星. 基于NNBR模型的隧道盾构施工地表沉降实测与计算分析[J]. 吉林大学学报(工学版), 2021, 51(1): 245-251.
[2] 单德山,张潇,顾晓宇,李乔. 斜拉索悬链线构形的伸长量解析计算方法[J]. 吉林大学学报(工学版), 2021, 51(1): 217-224.
[3] 薛素铎,鲁建,李雄彦,刘人杰. 跳格布置对环形交叉索桁结构静动力性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1687-1697.
[4] 高昊,王君杰,刘慧杰,王剑明. 连续梁桥地震行为可控设计准则及实用装置[J]. 吉林大学学报(工学版), 2020, 50(5): 1718-1727.
[5] 王勃,董元正,董丽欣. 基于短期风速资料的基本风压计算方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1739-1746.
[6] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[7] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[8] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[9] 张军,钱诚,郭春燕,钱玉君. 基于多源时空数据的建筑宜居性动态设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1169-1173.
[10] 梁宁慧,缪庆旭,刘新荣,代继飞,钟祖良. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报(工学版), 2019, 49(4): 1144-1152.
[11] 张磊,刘保国,储昭飞. 深厚孔隙砂岩含水层疏干排水对盾构斜井的 影响模型试验[J]. 吉林大学学报(工学版), 2019, 49(3): 788-797.
[12] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[13] 王腾, 周茗如, 马连生, 乔宏霞. 基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481.
[14] 郭楠, 张平阳, 左煜, 左宏亮. 竹板增强胶合木梁受弯性能[J]. 吉林大学学报(工学版), 2017, 47(3): 778-788.
[15] 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!