吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (5): 1785-1791.doi: 10.13229/j.cnki.jdxbgxb20200532
• 计算机科学与技术 • 上一篇
Jie CAO1,2(),Xue QU3,Xiao-xu LI1()
摘要:
针对在小样本图像分类中,几个样本的特征图不足以描述整个类特征空间,导致误分类的问题,提出了滑动特征向量神经网络(SFV),该方法通过集合同类样本的滑动特征向量构建类特征空间,并利用样本-类的特征向量度量方式分类查询样本。SFV融合了特征块的边缘信息以及位置结构的相关性,最大限度地利用深层特征信息的同时扩充了类特征空间。实验表明:在各数据集中SFV均能取得不错的效果,在细粒度数据集上,达到了最佳精度。
中图分类号:
1 | 车翔玖, 董有政. 基于多尺度信息融合的图像识别改进算法[J]. 吉林大学学报: 工学版, 2020, 50(5): 1747-1754. |
Che Xiang-jiu, Dong You-zheng. Improved image recognition algorithm based on multi⁃scale information fusion[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1747-1754. | |
2 | Wang Y, Yao Q, Kwok J T, et al. Generalizing from a few examples: a survey on few-shot learning[J].ACM Computing Surveys (CSUR), 2020, 53(3): 1-34. |
3 | Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]∥International Conference on Machine Learning, Sydney, 2017: 1126-1135. |
4 | Ravi S, Larochelle H. Optimization as a model for few-shot learning[C]∥International Conference on Learning Representations, San Juan, 2016: 1-11. |
5 | Chen W Y, Liu Y C, Kira Z, et al. A closer look at few-shot classification[C]∥International Conference on Learning Representations, New Orleans, 2019: 04232. |
6 | Cai Q, Pan Y, Yao T, et al. Memory matching networks for one-shot image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 4080-4088. |
7 | Koch G, Zemel R, Salakhutdinov R. Siamese neural networks for one-shot image recognition[C]∥International Conference on Machine Learning, Lille, France, 2015. |
8 | Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning[C]∥Neural Information Processing Systems, Barcelona, 2016: 3630-3638. |
9 | Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning[C]∥Neural Information Processing Systems, Long Beach, 2017: 4077-4087. |
10 | Sung F, Yang Y, Zhang L, et al. Learning to compare: relation network for few-shot learning[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 1199-1208. |
11 | 刘萍萍, 赵宏伟, 耿庆田, 等. 基于局部特征和视皮层识别机制的图像分类[J]. 吉林大学学报: 工学版, 2011, 41(5): 1401-1406. |
Liu Ping-ping, Zhao Hong-wei, Geng Qing-tian, et al. Image classification method based on local feature and visual cortex recognition mechanism[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(5): 1401-1406. | |
12 | Li W, Wang L, Xu J, et al. Revisiting local descriptor based image-to-class measure for few-shot learning [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, 2019: 7260-7268. |
13 | Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
14 | Welinder P, Branson S, Mita T, et al. Caltech-UCSD birds 200[R]. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010: 1-15. |
15 | Krause J, Stark M, Deng J, et al. 3D object representations for fine-grained categorization[C]∥Proceedings of the IEEE International Conference on Computer Vsion Workshops, Sydney, 2013: 554-561. |
16 | Khosla A, Jayadevaprakash N, Yao B, et al. Novel dataset for fine-grained image categorization: stanford dogs[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, 2012: 3181866. |
17 | Oreshkin B N, Rodriguez P, Lacoste A. TADAM: task dependent adaptive metric for improved few-shot learning[C]∥Neural Information Processing Systems, Canada, 2018: 721-731. |
18 | Rusu A A, Rao D, Sygnowski J, et al. Meta-learning with latent embedding optimization[C]∥International Conference on Learning Representations, New Orleans, 2019: 05960. |
[1] | 王春波,底晓强. 基于标签分类的云数据完整性验证审计方案[J]. 吉林大学学报(工学版), 2021, 51(4): 1364-1369. |
[2] | 钱榕,张茹,张克君,金鑫,葛诗靓,江晟. 融合全局和局部特征的胶囊图神经网络[J]. 吉林大学学报(工学版), 2021, 51(3): 1048-1054. |
[3] | 周炳海,吴琼. 基于多目标的机器人装配线平衡算法[J]. 吉林大学学报(工学版), 2021, 51(2): 720-727. |
[4] | 许骞艺,秦贵和,孙铭会,孟诚训. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报(工学版), 2021, 51(2): 704-711. |
[5] | 徐涛,马克,刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报(工学版), 2021, 51(1): 27-38. |
[6] | 宋元,周丹媛,石文昌. 增强OpenStack Swift云存储系统安全功能的方法[J]. 吉林大学学报(工学版), 2021, 51(1): 314-322. |
[7] | 车翔玖,董有政. 基于多尺度信息融合的图像识别改进算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1747-1754. |
[8] | 赵宏伟,李明昭,刘静,胡黄水,王丹,臧雪柏. 基于自然性和视觉特征通道的场景分类[J]. 吉林大学学报(工学版), 2019, 49(5): 1668-1675. |
[9] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[10] | 许岩岩, 陈辉, 刘家驹, 袁金钊. CELL处理器并行实现立体匹配算法[J]. 吉林大学学报(工学版), 2017, 47(3): 952-958. |
[11] | 胡冠宇, 乔佩利. 基于云群的高维差分进化算法及其在网络安全态势预测上的应用[J]. 吉林大学学报(工学版), 2016, 46(2): 568-577. |
[12] | 张培林, 陈彦龙, 王怀光, 李胜. 考虑信号特点的合成量子启发结构元素[J]. 吉林大学学报(工学版), 2015, 45(4): 1181-1188. |
[13] | 杨焱, 刘飒, 廉世彬, 朱晓冬. 基于计算机视觉的果树害虫的形态特征分析[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 235-238. |
[14] | 佟金, 王亚辉, 樊雪梅, 张书军, 陈东辉. 生鲜农产品冷链物流状态监控信息系统[J]. 吉林大学学报(工学版), 2013, 43(06): 1707-1711. |
[15] | 吴迪, 曹洁. 智能环境下基于核相关权重鉴别分析算法的多特征融合人脸识别[J]. 吉林大学学报(工学版), 2013, 43(02): 439-443. |
|