吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2144-2153.doi: 10.13229/j.cnki.jdxbgxb20200690

• 计算机科学与技术 • 上一篇    

结合格局检测与局部搜索的故障数据缩减方法

欧阳丹彤1,2(),张必歌1,2,田乃予1,2,张立明1,2()   

  1. 1.吉林大学 计算机科学与技术学院,长春 130012
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春 130012
  • 收稿日期:2020-09-11 出版日期:2021-11-01 发布日期:2021-11-15
  • 通讯作者: 张立明 E-mail:ouyangdantong@163.com;limingzhang@jlu.edu.cn
  • 作者简介:欧阳丹彤(1968-),女,教授,博士生导师. 研究方向:人工智能,基于模型诊断.E-mail:ouyangdantong@163.com
  • 基金资助:
    国家自然科学基金项目(61672261)

Fail data reduction algorithm combining configuration checking with local search

Dan-tong OUYANG1,2(),Bi-ge ZHANG1,2,Nai-yu TIAN1,2,Li-ming ZHANG1,2()   

  1. 1.College of Computer Science and Technology,Jilin University,Changchun 130012,China
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering,Ministry of Education,Jilin University,Changchun 130012,China
  • Received:2020-09-11 Online:2021-11-01 Published:2021-11-15
  • Contact: Li-ming ZHANG E-mail:ouyangdantong@163.com;limingzhang@jlu.edu.cn

摘要:

针对集成电路故障诊断中故障数据缩减方法N-cover存在冗余故障数据的问题,提出了结合格局检测与局部搜索的故障数据缩减方法。通过分析故障数据与端口覆盖次数的逻辑关系,提出了故障频率和故障覆盖度的概念以指导局部搜索。同时,结合格局检测策略以避免重复搜索,进而通过减少冗余迭代来增加搜索广度。在标准测试用例上的实验结果表明,与现有方法相比,本文方法可有效缩减故障数据数目并提高求解效率。

关键词: 人工智能, 故障诊断, 电路测试, 故障数据, 局部搜索, 格局检测

Abstract:

Aiming at the problem of redundant fail data in the existing N-cover fail data reduction method, a fail data reduction method combining pattern detection and local search is proposed. A local search method combining configuration checking strategy was proposed. By analyzing the logical relationship between fail data and the coverage time of ports, the concepts of fail frequency and defect coverage degree were proposed. Meanwhile, the configuration checking strategy is combined to avoid visiting the same solution space, and the search breadth is increased by reducing redundant iterations. The experimental results for benchmark circuits demonstrate that, compared with existing methods, the proposed method effectively reduces the amount of fail data and improves efficiency while ensuring the quality of diagnosis.

Key words: atificial intelligence, fault diagnosis, circuit test, fail data, local search, configuration checking

中图分类号: 

  • TN407

图1

N-cover目标次数曲线"

表1

故障数据示例"

故障数据故障位
z1z2z3z4z5z6z7z8z9z10
tar(zi1311333221
d1XXXXX
d2XXXXXX
d3XX
d4XXXXX
d5XXXXXXX
d6XX
d7XXXX
d8XX
d9XXXXX
d10XXXX
d11XXXX
d12XXXX

表2

N-cover计算过程"

自变量zi(tar(zi))
z1(1)z2(3)z3(1)z4(1)z5(3)z6(3)z7(3)z8(2)z9(2)z10(1)
COVdiffDcand={}1311333221
Dcand=d50211222111
Dcand=d5d20111111001
Dcand=d5d2d10000010001
Dcand={d5d2d1d90-100-10-10-11
Dcand=d5d2d1d9d40-200-2-1-20-10

表3

FDRLS求解过程"

迭代过程数值类型自变量zi(tar(zi))
整体过程局部过程z1(1)z2(3)z3(1)z4(1)z5(3)z6(3)z7(3)z8(2)z9(2)z10(1)
第1轮迭代Hzi09/9009/69/59/89/39/20
Dtemp={d5,d1,d4tar(zi)-num(zi0000010110
Dtemp={d5,d1,d4,d20-100-10-1000
Dtemp={d5d4d20011000000
Dtemp={d5d20111111001
Dtemp={d5d2d900110000-11
第2轮迭代Hzi09/9119/69/59/89/39/21
Dtemp={d5d2tar(zi)-num(zi0111111001
Dtemp={d5d2d40011000000
????

表4

ISCAS85实验结果及对比"

namegoldnewintFail data/ytes

o_time

/ms

r_time

/ms

DADDRFSRDS
beforeafterRLSCovHSRLSCovHSRLSCovHSRLSCovHS
ave-------79.379.782.820.921.715.055.446.931.757.952.330.9
c1733.62.752214924.19.290.0100.066.730.066.7071.571.514.261.858.133.3
c432171698 3862 187133.323.152.952.970.641.241.25.973.973.917.482.783.422.1
c4992221219 6104 805727.7343.195.595.586.40050.050.037.537.552.943.232.0
c88025212115 5417 0641 026.1422.184.084.084.0012.012.054.550.045.558.957.139.1
c13551922.616.99 0104 805769.3352.388.989.594.730.031.615.846.746.733.354.254.332.3
c19081922176 7302 884338.4126.189.578.910026.35.3057.142.928.662.755.126.0
c26702533.520.585 75739 30537 279.418 153.482.080.084.052.020.012.054.247.927.151.345.822.4
c354035252121 3977 7261 116.0360.760.054.371.411.411.417.163.950.044.567.760.641.9
c531520201992 15150 925112 953.661 555.995.0100.095.05.05.010.044.736.844.745.538.043.9
c62882920164 2242 640456.5267.555.262.175.913.824.127.637.512.525.041.427.816.1

表5

ISCAS89实验结果及对比"

namegoldnewintFail data/bytes

o_time

/ms

r_time

/ms

DADDRFSRDS
beforeafterRLSCovHSRLSCovHSRLSCovHSRLSCovHS
ave-------79.277.981.015.617.611.763.560.154.867.065.258.3
s2777.161 05642250.512.285.757.1100.015.714.328.660.060.040.175.872.937.0
s208_13026.81910 7642 5741 134.8180.263.363.396.726.030.030.076.171.745.684.184.245.7
s2986159.348.313 3974 9854 864.81512.379.265.670.518.018.08.262.860.553.568.968.552.4
s3442115.314.314 5525 8215 987.72032.768.166.766.74.84.84.860.054.351.466.160.649.3
s34931312814 9684 9896 866.22 062.390.374.293.59.79.76.566.761.150.070.064.148.3
s38255393518 6426 77911 001.04 574.263.670.970.97.35.55.563.656.863.658.463.062.7
s3869478.577.519 0405 6008 610.12 011.182.494.779.81.17.419.170.669.470.676.674.568.4
s40068524620 3378 05012 597.84 125.267.667.647.18.88.813.260.456.366.767.362.666.9
s420423429.532 70111 48913 791.44 692.270.269.076.210.733.311.964.962.240.566.063.939.7
s420_13040.428.238 3408 94614 840.92 892.994.090.010040.740.023.376.774.444.480.581.040.3
s4444757.14318 6428 05014 471.76 245.691.591.593.630.025.517.056.847.765.956.848.665.1
s5106759.95222 5316 11512 784.73 752.377.671.689.511.810.411.972.968.631.470.771.427.2
s5265151.147.335 59011 86342 205.612 005.592.792.282.37.511.8066.765.565.571.671.670.0
s526n5265.347.633 47113 55834 293.513 883.691.598.194.234.036.57.759.555.763.359.556.592.9
s64116141465 91432 17253 264.523 353.787.587.587.500051.248.870.256.254.379.4
s7137565.951.365 91429 03381 307.534 366.568.481.365.319.517.39.356.054.866.757.758.276.4
s820134858454 47219 986164 508.356 617.562.761.967.20.717.9063.363.355.465.665.651.2
s832171168.7120.455 64820 770155 147.357 119.670.469.659.128.259.124.062.756.354.963.258.260.2
s838242424105 72236 342221 197.272 192.2100100.0100.0004.265.664.132.867.466.962.9
s838_14849.133.9150 66041 309323 591.377 246.470.668.810031.731.322.972.669.446.876.174.252.0
s9535644.939.948 25618 625259 815.588 192.471.371.482.18.912.51.861.460.553.566.168.034.0
s11965550.246.696 76836 352613 460.5218 912.484.785.590.96.51.89.162.458.760.364.361.482.3
s14238889.881.5147 27360 5601364 428.9572 061.592.690.9839.410.24.558.953.359.858.158.870.3
s1488258217.9210.956 17923 517642 157.7226 094.081.782.262.42.73.51.658.155.259.364.863.161.5
s1494246320.5181.154 87322 210619 257.5214 570.873.676.867.556.731.729.359.555.458.365.458.363.2
1 Chakraborty T J, Chiang C H, van Treuren B G. A practical approach to comprehensive system test & debug using boundary scan based test architecture[C]∥Proceedings of 2007 IEEE International Test Conference, Santa Clara, CA, USA, 2007: 1-10.
2 欧阳丹彤,刘伯文,刘梦,等. 结合电路结构基于分块的诊断方法[J]. 电子学报, 2018, 46(7): 1571-1577.
Ouyang Dan-tong, Liu Bo-wen, Liu Meng, et al. A block-based diagnostic method combining with the circuit structure[J]. Acta Electronica Sinica, 2018, 46(7): 1571-1577.
3 欧阳丹彤,苏静,叶育鑫,等. 基于模型诊断的本体调试局部定位[J]. 吉林大学学报:工学版, 2014, 44(6): 1757-1763.
Ouyang Dan-tong, Su Jing, Ye Yu-xin, et al. Local pinpointing of ontology debugging based on model-based diagnosis[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(6): 1757-1763.
4 欧阳丹彤,刘扬,刘杰. 故障响应指导下基于测试集的故障诊断方法[J]. 吉林大学学报:工学版, 2021, 51(3): 1017-1025.
Ouyang Dan-tong, Liu Yang, Liu Jie. Fault diagnosis method based on test set under fault response guidance[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025.
5 Song J, Ouyang D T, Liu Y, et al. Improving the accuracy of defect diagnosis by test score based on fault free[J]. Electronics Letters, 2020, 56(16): 845-848.
6 Pomeranz I. Test scores for improving the accuracy of logic diagnosis for multiple defects[J]. IEEE Transactions on Very Large Scale Integration Systems, 2019, 27(7): 1720-1724.
7 Pomeranz I, Venkataraman S. LFSR-based test generation for reduced fail data volume[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 5261-5266.
8 Huang Y, Milewski S, Rajski J, et al. Hypercompression of test patterns[C]∥IEEE International Test Conference, Phoenix, AZ, USA, 2018: 1-9.
9 欧阳丹彤,陈晓艳,叶靖,等. 基于极小碰集求解算法的测试向量集约简[J]. 计算机研究与发展, 2019, 56(11): 2448-2457.
Ouyang Dan-tong, Chen Xiao-yan, Ye Jing, et al. Test pattern set reduction based on the method of computing minimal hitting set[J]. Journal of Computer Research and Development, 2019, 56(11): 2448-2457.
10 Amati L, Bolchini C, Frigerio L, et al. An incremental approach to functional diagnosis[C]∥Proceedings of 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Chicago, IL, USA, 2009: 392-400.
11 Wang H F, Poku O, Yu X C, et al. Test-data volume optimization for diagnosis[C]∥Proceedings of the 49th Annual Design Automation Conference, San Francisco, USA, 2012: 567-572.
12 Bolchini C, Cassano L. A novel approach to incremental functional diagnosis for complex electronic boards[J]. IEEE Transactions on Computers, 2015, 65(1): 42-52.
13 Liu M Y, Pan R J, Ye F M, et al. Fine-grained adaptive testing based on quality prediction[C]∥Proceedings of 2018 IEEE International Test Conference, Phoenix, AZ, USA, 2018: 1-10.
14 吕洪武, 赵航, 王宏志, 等. 基于模糊神经网络的MVB故障诊断算法[J]. 吉林大学学报:理学版, 2020, 58(1): 104-108.
Lv Hong-wu, Zhao Hang, Wang Hong-zhi, et al. Fault diagnosis algorithm for MVB based on fuzzy neural network[J]. Journal of Jilin University Science Edition, 2020, 58(1): 104-108.
15 李家伟. 基于证据理论和支持向量机的风机故障智能诊断[J]. 吉林大学学报:理学版, 2016, 54(3): 609-612.
Li Jia-wei. Intelligent diagnosis of fan fault based on evidence theory and support vector machine[J]. Journal of Jilin University Science Edition, 2016, 54(3): 609-612.
16 Bodhe S, Amyeen M E, Pomeranz I, et al. Diagnostic fail data minimization using an N-Cover algorithm[J]. IEEE Transactions on Very Large Scale Integration Systems, 2016, 24(3): 1198-1202.
17 Bodhe S, Amyeen M E, Galendez C, et al. Reduction of diagnostic fail data volume and tester time using a dynamic N-cover algorithm[C]∥Proceedings of the 34th IEEE VLSI Test Symposium, Las Vegas, NV, USA, 2016: 1-6.
18 Cai S W, Luo C, Thornton J, et al. Tailoring local search for partial MaxSAT[C]∥Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec, Canada, 2014: 2623-2629.
19 欧阳丹彤, 罗知雨, 耿雪娜, 等. 分布式离散事件系统的安全可诊断性算法[J]. 吉林大学学报:理学版, 2018, 56(3): 594-600.
Ouyang Dan-tong, Luo Zhi-yu, Geng Xue-na, et al. Algorithm of safe diagnosability for distributed discrete event systems[J]. Journal of Jilin University Science Edition, 2018, 56(3): 594-600.
20 张子成, 韩伟, 毛波. 基于模拟退火的自适应离散型布谷鸟算法求解旅行商问题[J]. 电子学报, 2018, 46(8): 1849-1857.
Zhang Zi-cheng, Han Wei, Mao Bo. Adaptive discrete cuckoo algorithm based on simulated annealing for solving TSP[J]. Acta Electronica Sinica, 2018, 46(8): 1849-1857.
21 Pomeranz I. OBO: an output-by-output scoring algorithm for fault diagnosis[C]∥Proceedings of IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA, 2014: 314-319.
22 Wang Y Y, Cai S W, Chen J J, et al. SCCWalk: an efficient local search algorithm and its improvements for maximum weight clique problem[J]. Artificial Intelligence, 2020, 280(C): No.103230.
23 Cai S W, Su K L. Local search for boolean satisfiability with configuration checking and subscore[J]. Artificial Intelligence, 2013, 204: 75-98.
24 Brglez F, Fujiwara H. A neutral netlist of 10 combinational benchmark circuits and a target translator in fortran[C]∥Proceedings of IEEE International Symposium on Circuits and Systems, Kyoto, Japan, 1985: 695-698.
25 Brglez F, Bryand D, Kozminski K. Combinational profiles of sequential benchmark circuits[C]∥Proceedings of IEEE International Symposium on Circuits and Systems, Portland, OR, USA, 1989: 1929-1934.
[1] 杨勇,陈强,曲福恒,刘俊杰,张磊. 基于模拟划分的SP⁃k⁃means-+算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1808-1816.
[2] 院老虎,连冬杉,张亮,刘义. 基于密集连接卷积网络和支持向量机的飞行器机械部件故障诊断[J]. 吉林大学学报(工学版), 2021, 51(5): 1635-1641.
[3] 刘富,梁艺馨,侯涛,宋阳,康冰,刘云. 模糊c-harmonic均值算法在不平衡数据上改进[J]. 吉林大学学报(工学版), 2021, 51(4): 1447-1453.
[4] 吕帅,刘京. 基于深度强化学习的随机局部搜索启发式方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1420-1426.
[5] 赵亚慧,杨飞扬,张振国,崔荣一. 基于强化学习和注意力机制的朝鲜语文本结构发现[J]. 吉林大学学报(工学版), 2021, 51(4): 1387-1395.
[6] 董延华,刘靓葳,赵靖华,李亮,解方喜. 基于BPNN在线学习预测模型的扭矩实时跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(4): 1405-1413.
[7] 李伟,陈剑,陶善勇. 自适应耦合周期势系统随机共振信号增强方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1091-1096.
[8] 欧阳丹彤,刘扬,刘杰. 故障响应指导下基于测试集的故障诊断方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1017-1025.
[9] 潘凤文,弓栋梁,高莹,徐明伟,麻斌. 基于锂离子电池线性化模型的电流传感器故障诊断[J]. 吉林大学学报(工学版), 2021, 51(2): 435-441.
[10] 尚福华,曹茂俊,王才志. 基于人工智能技术的局部离群数据挖掘方法[J]. 吉林大学学报(工学版), 2021, 51(2): 692-696.
[11] 赵海英,周伟,侯小刚,张小利. 基于多任务学习的传统服饰图像双层标注[J]. 吉林大学学报(工学版), 2021, 51(1): 293-302.
[12] 张根保,李浩,冉琰,李裘进. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1617-1626.
[13] 欧阳丹彤,马骢,雷景佩,冯莎莎. 知识图谱嵌入中的自适应筛选[J]. 吉林大学学报(工学版), 2020, 50(2): 685-691.
[14] 李贻斌,郭佳旻,张勤. 人体步态识别方法与技术[J]. 吉林大学学报(工学版), 2020, 50(1): 1-18.
[15] 徐谦,李颖,王刚. 基于深度学习的行人和车辆检测[J]. 吉林大学学报(工学版), 2019, 49(5): 1661-1667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!