吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 925-933.doi: 10.13229/j.cnki.jdxbgxb20200912

• 计算机科学与技术 • 上一篇    

基于G⁃UNet的多场景行人精确分割与检测

陈雪云(),贝学宇,姚渠,金鑫   

  1. 广西大学 电气工程学院,南宁 530004
  • 收稿日期:2020-11-26 出版日期:2022-04-01 发布日期:2022-04-20
  • 作者简介:陈雪云(1969-),男,副教授,博士.研究方向:机器学习与模式识别.E-mail:cxy1773@163.com
  • 基金资助:
    国家自然科学基金项目(62061002)

Pedestrian segmentation and detection in multi-scene based on G-UNet

Xue-yun CHEN(),Xue-yu BEI,Qu YAO,Xin JIN   

  1. School of Electrical Engineering,Guangxi University,Nanning 530004,China
  • Received:2020-11-26 Online:2022-04-01 Published:2022-04-20

摘要:

目前的语义分割方法可以得到行人的轮廓,但在行人相互遮挡时,无法直接得到图中行人的数量、身高和中心位置等信息。针对这一缺陷,提出了G-UNet模型算法:在语义分割主干之外,增加一个行人区域的高斯椭圆密度核检测分支,通过核的极大值点、垂直和水平轴尺度,分别检测行人的中心位置、高度和宽度,并由密度核极大值点的唯一性,解决了行人遮挡的检测难题。另外,UNet以空间对称的方式将底层和高层特征进行硬性的拼接,使得50%的固定误差直接传播到底层。本文提出可训练的柔性系数拼接方式,可以得到最优的误差分配传播方式。最后,传统的损失函数的误差值与行人标定面积成正比,导致小尺度行人容易漏检,本文提出目标增强损失函数提高网络检测小尺度行人的能力。在自建行人分割数据库中,实验结果证明了本文方法的有效性且优于其他方法。

关键词: 计算机应用, 行人语义分割, 高斯核, 柔性连接, 目标增强损失

Abstract:

Current semantic segmentation methods can obtain the outline of pedestrians, but when pedestrians block each other, the information such as the number, height and central position of the pedestrians in the figure can not be directly obtained. To solve this problem, we propose the G-UNet model algorithm that, in addition to the semantic segmentation backbone, a Gaussian ellipse density kernel detection branch of the pedestrian area is added, so that the center position, height and width of the pedestrian are detected respectively by the maximum point of the kernel, vertical axis and horizontal axis scale. The uniqueness of the maximum point of density kernel solves the detection problem of pedestrian occlusion. Besides, UNet stiffly concatenates the features of the bottom layer and the top layer in a spatial symmetric way so that 50% fixed errors are directly transmitted to the bottom layer. Then, we propose a trainable Soft Connection to obtain the optimal error distribution propagation method. Finally, to solve the problem that the value of the traditional loss function is proportional to the demarcated area of pedestrian, which makes small-scale pedestrians easy to be undetected, an Objective Enhanced Loss was proposed to improve the ability of detecting small-scale pedestrians of network. In the self-built pedestrian segmentation dataset, the experimental results show that the proposed method is effective and superior to other methods.

Key words: computer application, pedestrian semantic segmentation, Gaussian kernel, soft connection, target enhancement loss

中图分类号: 

  • TP391.41

图1

行人相互遮挡示意图"

图2

G-UNet网络结构图"

图3

柔性连接示意图"

图4

标定信息可视化与处理"

图5

G-UNet损失曲线"

图6

不同算法对小尺度行人分割结果"

表1

与不同语义分割算法的精度对比 (%)"

NetIoUF1?ScoreRecallPrecision
FCN?8S68.1280.5571.4192.38
PSPNet71.5881.9675.2290.03
UNet73.2483.6377.0691.43
本文76.0284.8079.0691.45

图7

不同算法的行人检测结果"

表2

行人检测精度对比 (%)"

NetIoUF1?ScoreRecallPrecision
YOLO?v367.0179.8469.5193.78
Faster R?CNN72.3380.9675.4387.37
FRCN70.8280.5573.5689.01
本文74.6484.8078.6989.67

表3

柔性连接实验结果 (%)"

αIoUF1?ScoreRecallPrecision
070.8280.3374.2387.52
0.172.1681.8076.0288.45
0.574.0382.7177.2289.03
173.6681.9576.3688.43
273.0281.4976.0687.75
(0~2.5)*74. 4183.5077.8690. 01

表4

目标增强损失实验结果 (%)"

aIoUF1?ScoreRecallPrecision
-1070.8681.0772.3292.22
-572.5682.4374.7291.05
072.9382.3675.4290.71
1073.2382.8076.2290.63
3074.5483.3977.3690.43
5075.0283.8778.2690.35
7074.6283.6178.3589.63
9074.0283.4178.1389.45
1 Saeidi M, Ahmadi A. Deep learning based on CNN for pedestrian detection: an overview and analysis[C]∥The 9th International Symposium on Telecommunications (IST), Tehran, Iran, 2018: 108-112.
2 Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego, USA, 2005 .
3 Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014.
4 Girshick R. Fast R-CNN[C]∥IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015.
5 Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
6 Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016.
7 Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu,USA, 2017: 6517-6525.
8 Redmon J, Farhadi A. YOLOv3: An Incremental Improvement[EB/OL].[2018-02-08]..
9 Tayara H, Kim G S. Vehicle detection and counting in high-resolution aerial images using convolutional regression neural network[J]. IEEE Access, 2017, 6: 2220-2230.
10 Chen X Y, Lin J Y, Xiang S M, et al. Detecting maneuvering target accurately based on a two-phase approach from remote sensing imagery[J]. IEEE Geoence and Remote Sensing Letters, 2020, 17(5): 849-853.
11 罗会兰, 张云. 基于深度网络的图像语义分割综述[J].电子学报, 2019, 47(10): 2211-2220.
Luo Hui-lan, Zhang Yun. A survey of image semantic segmentation based on deep network[J]. Acta Electronica Sinica, 2019, 47(10): 2211-2220.
12 Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Computer Society, 2017, 39(4): 640-651.
13 Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6230-6239.
14 Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[J]. Computer Vision and Pattern Recognition,2015, 9351: 234-241.
15 Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[DB/OL].[2017-02-05]..
[1] 刘铭,杨雨航,邹松霖,肖志成,张永刚. 增强边缘检测图像算法在多书识别中的应用[J]. 吉林大学学报(工学版), 2022, 52(4): 891-896.
[2] 魏晓辉,苗艳微,王兴旺. Rhombus sketch:自适应和准确的流数据sketch[J]. 吉林大学学报(工学版), 2022, 52(4): 874-884.
[3] 方世敏. 基于频繁模式树的多来源数据选择性集成算法[J]. 吉林大学学报(工学版), 2022, 52(4): 885-890.
[4] 李大湘,陈梦思,刘颖. 基于STA⁃LSTM的自发微表情识别算法[J]. 吉林大学学报(工学版), 2022, 52(4): 897-909.
[5] 王学智,李清亮,李文辉. 融合迁移学习的土壤湿度预测时空模型[J]. 吉林大学学报(工学版), 2022, 52(3): 675-683.
[6] 康苏明,张叶娥. 基于Hadoop的跨社交网络局部时序链路预测算法[J]. 吉林大学学报(工学版), 2022, 52(3): 626-632.
[7] 王雪,李占山,吕颖达. 基于多尺度感知和语义适配的医学图像分割算法[J]. 吉林大学学报(工学版), 2022, 52(3): 640-647.
[8] 欧阳继红,郭泽琪,刘思光. 糖尿病视网膜病变分期双分支混合注意力决策网络[J]. 吉林大学学报(工学版), 2022, 52(3): 648-656.
[9] 毛琳,任凤至,杨大伟,张汝波. 双向特征金字塔全景分割网络[J]. 吉林大学学报(工学版), 2022, 52(3): 657-665.
[10] 曲优,李文辉. 基于锚框变换的单阶段旋转目标检测方法[J]. 吉林大学学报(工学版), 2022, 52(1): 162-173.
[11] 赵宏伟,霍东升,王洁,李晓宁. 基于显著性检测的害虫图像分类[J]. 吉林大学学报(工学版), 2021, 51(6): 2174-2181.
[12] 刘洲洲,张倩昀,马新华,彭寒. 基于优化离散差分进化算法的压缩感知信号重构[J]. 吉林大学学报(工学版), 2021, 51(6): 2246-2252.
[13] 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173.
[14] 孙东明,胡亮,邢永恒,王峰. 基于文本融合的物联网触发动作编程模式服务推荐方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2182-2189.
[15] 林俊聪,雷钧,陈萌,郭诗辉,高星,廖明宏. 基于电影视觉特性的动态多目标实时相机规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2154-2163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!