吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (8): 1951-1956.doi: 10.13229/j.cnki.jdxbgxb20210176
• 农业工程·仿生工程 • 上一篇
李佩泽1,2(),赵世舜1,翁小辉3,蒋鑫妹4,崔洪博4,乔建磊4,常志勇5,6()
Pei-ze LI1,2(),Shi-shun ZHAO1,Xiao-hui WENG3,Xin-mei JIANG4,Hong-bo CUI4,Jian-lei QIAO4,Zhi-yong CHANG5,6()
摘要:
提出了一种基于CatBoost算法的传感器阵列优化策略。采用自行研制的基于仿生嗅觉的电子鼻测试系统,检测蒲公英上残留的农药敌百虫,提取蒲公英样本的响应特征信息,对传感器阵列进行多特征数据融合。使用CatBoost算法对数据矩阵进行特征选择,优化后的传感器数量从12个减少到3个,准确率从91.69%提高到98.03%,减少了约88%的特征值,优于相关系数、递归消除和其他常用算法,解决了传感器繁多、数据冗余的问题,大大提高了检测精度。结果表明:在蒲公英敌百虫残留检测上使用CatBoost算法可提高电子鼻的鉴别能力。
中图分类号:
1 | Boroduleva A, Wu J, Yang Q, et al. Development of fluorescence polarization immunoassays for parallel detection of pesticides carbaryl and triazophos in wheat grains[J]. Analytical Methods, 2017,9(48): 6814-6822. |
2 | Abdallah O I, Malhat F M. Thiacloprid residues in green onion (allium cepa) using micro liquid-liquid extraction and liquid chromatography-tandem mass spectrometry[J]. Agricultural Research, 2020, 9(3): 340-348. |
3 | Mercader J V, Agullo C, Abad-Somovilla A, et al. A monoclonal antibody-based immunoassay for mepanipyrim residue sensitive analysis in grape juice and wine[J]. Food Analytical Methods, 2020, 13(3): 770-779. |
4 | 常志勇, 陈东辉, 佟月英, 等. 基于人体嗅觉特征的猪肉新鲜度仿生电子鼻检测技术[J].吉林大学学报:工学版, 2012, 42(): 131-134. |
Chang Zhi-yong, Chen Dong-hui, Tong Yue-ying, et al. Human olfactory feature based bionic electronic nose technology for pork freshness detection[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(Sup.1): 131-134. | |
5 | 常志勇, 陈东辉, 张凌, 等.基于多传感器融合的鸡肉新鲜度检测方法[J].吉林大学学报: 工学版, 2013, 43(): 493-496. |
Chang Zhi-yong, Chen Dong-hui, Zhang Ling, et al. Method of chicken freshness detection based on multi-sensor fusion[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(Sup.1): 493-496. | |
6 | Sun H, Tian F, Liang Z, et al. Sensor array optimization of electronic nose for detection of bacteria in wound infection[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7350-7358. |
7 | Cipriano D, Capelli L. Evolution of electronic noses from research objects to engineered environmental odour monitoring systems: a review of standardization approaches[J]. Biosensors, 2019, 9(2): 75. |
8 | Amkor A, El Barbri N. A measurement prototype based on gas sensors for detection of pesticide residues in edible mint[J]. Journal of Food Measurement and Characterization, 2021, 15(1): 170-180. |
9 | 翁小辉, 栾祥宇, 陈冬雪, 等.基于特征提取的烃类气体电子鼻检测方法[J].吉林大学学报: 工学版, 2020, 50(6): 2306-2312. |
Weng Xiao-hui, Luan Xiang-yu, Chen Dong-xue, et al. Electronic nose detection for hydrocarbon gas based on feature extraction[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(6): 2306-2312. | |
10 | Xu K, Wang J, Wei Z, et al. An optimization of the MOS electronic nose sensor array for the detection of Chinese pecan quality[J]. Journal of Food Engineering, 2017, 203: 25-31. |
11 | Liu T, Zhang W, McLean P, et al. Electronic nose-based odor classification using genetic algorithms and fuzzy support vector machines[J]. International Journal of Fuzzy Systems, 2018, 20(4): 1309-1320. |
12 | Yan K, Zhang D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination[J]. Sensors and Actuators B-Chemical, 2015, 212: 353-363. |
13 | Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[J]. Advances in Neural Information Processing Systems, 2018, 31: 6638-6648. |
14 | Hamzah H, Bustamam A, Yanuar A, et al. Predicting the molecular structure relationship and the biological activity of DPP-4 inhibitor using deep neural network with CatBoost method as feature selection[C]∥12th International Conference on Advanced Computer Science and Information Systems, Depok, Indonesia, 2020: 101-107. |
15 | .食品中农药最大残留限量 [S]. |
16 | Razavi M R. Gender differences in the effect of virtual social networks use on students' academic performance[J].Current Psychology,2021,40(2): 744-750. |
[1] | 周丰丰,朱海洋. 基于三段式特征选择策略的脑电情感识别算法SEE[J]. 吉林大学学报(工学版), 2022, 52(8): 1834-1841. |
[2] | 王斌,何丙辉,林娜,王伟,李天阳. 基于随机森林特征选择的茶园遥感提取[J]. 吉林大学学报(工学版), 2022, 52(7): 1719-1732. |
[3] | 王生生,姜林延,杨永波. 基于最优传输特征选择的医学图像分割迁移学习[J]. 吉林大学学报(工学版), 2022, 52(7): 1626-1638. |
[4] | 李景彬,杨禹锟,温宝琴,坎杂,孙雯,杨朔. 基于根茬检测的秋后残膜回收导航路径提取方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1528-1539. |
[5] | 翁小辉,孙友宏,张书军,谢军,常志勇. 基于仿生鼻腔优化的油气检测方法与实验新技术[J]. 吉林大学学报(工学版), 2020, 50(1): 382-388. |
[6] | 王鹏宇,赵世杰,马天飞,熊晓勇,程馨. 基于联合概率数据关联的车用多传感器目标跟踪融合算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1420-1427. |
[7] | 高万夫,张平,胡亮. 基于已选特征动态变化的非线性特征选择方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1293-1300. |
[8] | 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881. |
[9] | 袁哲明, 张弘杨, 陈渊. 基于特征选择和支持向量机的HIV-1型蛋白酶剪切位点预测[J]. 吉林大学学报(工学版), 2017, 47(2): 639-646. |
[10] | 代琨,于宏毅,仇文博,李青. 基于SVM的网络数据无监督特征选择算法[J]. 吉林大学学报(工学版), 2015, 45(2): 576-582. |
[11] | 王刚, 张禹瑄, 李颖, 陈慧灵, 胡玮通, 秦磊. 一种微阵列数据降维新方法[J]. 吉林大学学报(工学版), 2014, 44(5): 1429-1434. |
[12] | 姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报(工学版), 2014, 44(01): 137-141. |
[13] | 常志勇, 陈东辉, 张凌, 佟月英, 翁小辉, 佟金. 基于多传感器融合的鸡肉新鲜度检测方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 493-496. |
[14] | 杨小军, 宋青松, 马祥, 李东海. 基于多模型信息滤波器的故障容错目标跟踪[J]. 吉林大学学报(工学版), 2013, 43(05): 1381-1385. |
[15] | 常志勇, 陈东辉, 佟月英, 佟金, 谢军. 基于人体嗅觉特征的猪肉新鲜度仿生电子鼻检测技术[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 131-134. |
|