吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2456-2465.doi: 10.13229/j.cnki.jdxbgxb20210313

• 通信与控制工程 • 上一篇    

基于多目标雷达数据的单点交通信号控制方法

刘东波1,2(),沈莉潇3,代磊磊2(),陆建1   

  1. 1.东南大学 交通学院,南京 211189
    2.公安部交通管理科学研究所,江苏 无锡 214151
    3.浙江省城乡规划设计研究院,杭州 310027
  • 收稿日期:2021-03-05 出版日期:2022-10-01 发布日期:2022-11-11
  • 通讯作者: 代磊磊 E-mail:dbliu@vip.sina.com;alei_9935@126.com
  • 作者简介:刘东波(1975-),男,研究员,博士研究生. 研究方向:交通控制. E-mail: dbliu@vip.sina.com
  • 基金资助:
    国家重点研发计划项目(2018YFB1601000)

Traffic signal control method at isolated intersections based on multi-target radar data

Dong-bo LIU1,2(),Li-xiao SHEN3,Lei-lei DAI2(),Jian LU1   

  1. 1.School of Transportation,Southeast University,Nanjing 211189,China
    2.Traffic Management Research Institute of the Ministry of Public Security,Wuxi 214151,China
    3.Zhejiang Urban and Rural Planning Design Institute,Hangzhou 310027,China
  • Received:2021-03-05 Online:2022-10-01 Published:2022-11-11
  • Contact: Lei-lei DAI E-mail:dbliu@vip.sina.com;alei_9935@126.com

摘要:

针对多目标雷达检测器可以获取区域交通状态的特点,提出了一种基于多目标雷达数据的单点交叉口信号控制方法。首先,根据进口道检测区域排队长度情况,设计了单点信号控制策略,将单点信号控制划分为两个阶段。其次,分别确定两个阶段的信号控制方法。第一阶段主要解决常规车辆放行问题,建立了信号相位的切换规则。第二阶段主要解决进口道车辆排队过长以及出口道排队溢出问题,建立了相应的控制逻辑规则。在此基础上,确定了相关控制参数的取值与优化方法。最后,以实际典型交叉口为例对本文构建的控制方法进行仿真验证。结果表明,本文控制方法可以有效提升交叉口运行效率,平均车辆延误降低了9%,高交通需求下车辆排队长度降低了15.5%。

关键词: 交通信息工程及控制, 多目标雷达, 交通信号控制, 交通仿真

Abstract:

Aiming at the characteristics that the multi-target radar detectors can obtain the regional traffic performance, a signal control method at isolated intersections was r proposed based on multi-target radar data. First, according to the queue length of the detection area at the approach, a signal control strategy at isolated intersections is designed, and the signal control method is divided into two stages. Secondly, the signal control methods of the two stages are determined respectively. The first stage mainly solves the problem of conventional vehicle release, and establishes the signal phase transfer rule. The second stage mainly solves the problem of excessively long queues of vehicles at the approach and overflow of queues at the exit. The corresponding control logic rules are established. On this basis, the value and optimization method of related control parameters are determined. Finally, the actual typical intersection is taken as an example to simulate and verify the proposed signal control method. The results show that the proposed signal control method in this paper can effectively improve the operation efficiency of the intersection, the average vehicle delay is reduced by 9%, and the vehicle queue length under high traffic demand is reduced by 15.5%.

Key words: traffic information engineering and control, multi-target radar, traffic signal control, traffic simulation

中图分类号: 

  • U491

图1

交通信号控制思路图"

图2

评估区域划分示意图"

表1

权重确定方法"

车道数n123≥4
权重系数ξp10.90.80.7

图3

第一控制阶段流程图"

图4

第二控制阶段流程图"

图5

测试交叉口示意图"

表2

信号配时参数设置"

信号参数取值
α/(veh·km-170
β/(veh·km-140 veh/km
ξp0.7
Δt/s1
P1/P5(东西直行)最小绿/s20
最大绿/s45
P2/P6(东西左转)最小绿/s10
最大绿/s30
P3/P7(南北直行)最小绿/s20
最大绿/s40
P4/P8(南北左转)最小绿/s10
最大绿/s30

表3

绿灯间隔时间矩阵"

P1P2P3P4P5P6P7P8
P124106
P231045
P324345
P444204
P504340
P614300
P762263
P800553

表4

仿真模型参数设置"

参 数取 值
车辆组成类型95% Car,5% Bus
驾驶行为模型Wiedemann 74
驾驶期望车速50(45~55)km/h
仿真运行时段0~11400 sim.sec
数据采样时段600~11400 sim.sec
数据采样间隔300 sim.sec
仿真运行步长5 time steps/sim.sec

图6

不同交通需求下的延误对比"

图7

交叉口车均延误对比"

表5

控制效果的假设检验"

项 目均值标准差延误降低P显著性
低需求新方法27.944.128.69%0.000显著
老方法30.604.35
中需求新方法41.276.329.73%0.002显著
老方法45.726.91
高需求新方法69.5111.818.82%0.000显著
老方法76.2312.04

表6

排队长度对比"

项 目平均排队长度/m排队减少
低需求新方法31.343.33%
老方法32.42
中需求新方法53.2110.47%
老方法59.43
高需求新方法73.3215.54%
老方法86.81
1 王殿海, 金盛, 马东方, 等. 城市交通控制理论与方法[M]. 北京: 电子工业出版社, 2019.
2 曹阳. 基于模拟退火的交叉口自适应信号控制优化研究[J]. 交通运输工程与信息学报, 2018, 16(1): 49-55, 60.
Cao Yang. Optimization of adaptive signal control using simulated annealing algorithm[J]. Journal of Transportation Engineering and Information, 2018, 16(1): 49-55, 60.
3 李祥尘, 李进龙, 何梦辰. 基于相位优化的干线双向绿波协调控制方法[J]. 交通运输工程与信息学报, 2018, 16(1): 115-121.
Li Xiang-chen, Li Jin-long, He Meng-chen. A phase optimization based two-way green wave control strategy for urban arterials[J]. Journal of Transportation Engineering and Information, 2018, 16(1): 115-121.
4 Miller A J. A computer control system for traffic network[C]∥Proc of the 2nd International Symposium on Theory of Road Traffic Flow, London, UK,1963:201-220.
5 Gartner N H. OPAC: a demand-responsive strategy for traffic signal control[J]. Transportation Research Record, 1983, 906: 75-84.
6 Vincent R A, Young C P. Self-optimizing traffic signal control using microprocessors—the TRRL' Mova' strategy for isolated intersections[J]. Traffic Engineering& Control, 1986, 27(7/8): 385-387.
7 Crabtree M R, Henderson I R. MOVA traffic control manual application guide [M]. Hongkong: TRI Limited, 2005.
8 徐洪峰, 柳爽, 张栋, 等. 单点全感应式信号控制方法的参数取值[J]. 吉林大学学报: 工学版, 2019, 49(1): 45-52.
Xu Hong-feng, Liu Shuang, Zhang Dong, et al. Configuring parameters of fully actuated control at isolated signalized intersections[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 45-52.
9 徐洪峰, 耿现彩. 面向T形交叉口的机动车相位固定最小绿灯时间计算[J]. 吉林大学学报: 工学版, 2011, 42(3): 600-605.
Xu Hong-feng, Geng Xian-cai. Absolute minimum green time calculation for vehicles at 3-leg intersection[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 42(3): 600-605.
10 Wang X B, Yin K, Liu H. Vehicle actuated signal performance under general traffic at an isolated intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 582-598.
11 罗小芹, 王殿海, 金盛. 面向混合交通的感应式交通信号控制方法[J]. 吉林大学学报: 工学版, 2019, 49(3): 695-704.
Luo Xiao-qin, Wang Dian-hai, Jin Sheng. Traffic signal actuated control at isolated intersections for heterogeneous traffic[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 695-704.
12 Feng Y H, Head K L, Khoshmagham S, et al. A real-time adaptive signal control in a connected vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 460-473.
13 Guo Q, Li L, Ban X. Urban traffic signal control with connected and automated vehicles: a survey[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 313-334.
14 Kamal M, Hayakawa T, Imura J. Development and evaluation of an adaptive traffic signal control scheme under a mixed-automated traffic scenario[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(2): 590-602.
15 Feng Y, Zheng J, Liu H. Real-time detector-free adaptive signal control with low penetration of connected vehicles[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(18): 35-44.
16 Yao Z H, Jiang Y S, Zhao B, et al. A dynamic optimization method for adaptive signal control in a connected vehicle environment[J]. Journal of Intelligent Transportation Systems, 2019, 24(2): 184-200.
17 Li L, Lv Y, Wang F Y, Traffic signal timing via deep reinforcement learning[J]. Traffic Signal Timing Via Deep Reinforcement Learning, 2016, 3(3): 247-254.
18 孙浩, 陈春林, 刘琼, 等. 基于深度强化学习的交通信号控制方法[J]. 计算机科学, 2020, 47(2): 169-174.
Sun Hao, Chen Chun-lin, Liu Qiong, et al. Traffic signal control method based on deep reinforcement learning[J]. Computer Science, 2020, 47(2): 169-174.
19 Chu T S, Wang J, Codeca L, et al. Multi-agent deep reinforcement learning for large-scale traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(3): 1-10.
20 Tan K L, Poddar S, Sarkar S, et al. Deep reinforcement learning for adaptive traffic signal control[C]∥ ASME Dyn Syst Control Conf, Columbus,USA,2019.
21 Genders W, Razavi S. Asynchronous N-step Q-learning adaptive traffic signal control[J]. Journal of Intelligent Transportation Systems, 2019, 23(4): 319-331.
22 唐杰祯. 基于广域雷达的单点信号控制配时优化研究[D]. 南京:东南大学交通学院, 2019.
Tang Jie-zhen. Research on timing optimization of single-point signal control based on wide area radar[D]. Nanjing: College of Transportation,Southeast University, 2019.
23 安娜. 基于多目标跟踪雷达的单点全感应式信号控制方法[D]. 大连:大连理工大学交通运输学院, 2020.
An Na. Fully-actuated signal control at isolated intersections based on multi-target tracking radar[D]. Dalian: School of Transportation, Dalian University of Technology, 2020.
24 别一鸣, 姜凯, 汤茹茹, 等. 考虑方案过渡影响的单点交通控制时段划分方法[J]. 吉林大学学报:工学版, 2019, 49(6): 1844-1851.
Bie Yi-ming, Jiang Kai, Tang Ru-ru, et al. Time of interval partition for traffic control at isolated intersection considering impacts of plan transition[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1844-1851.
[1] 徐洪峰,陈虹瑾,张栋,陆千惠,安娜,耿现彩. 面向网联汽车环境的单点全感应式信号配时技术[J]. 吉林大学学报(工学版), 2022, 52(6): 1324-1336.
[2] 林赐云,谢天承,覃蔚,郭旭,李正浩,郑臻. 冰雪天气下交叉口信号配时优化方法[J]. 吉林大学学报(工学版), 2022, 52(10): 2316-2324.
[3] 姚荣涵,祁文彦,郑刘杰,曲大义. 基于车道选择及行车轨迹的左转导向线设置方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1651-1663.
[4] 贾超,徐洪泽,王龙生. 基于多质点模型的列车自动驾驶非线性模型预测控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1913-1922.
[5] 曲大义,贾彦峰,刘冬梅,杨晶茹,王五林. 考虑多特性因素的路网交叉口群动态划分方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1478-1483.
[6] 白乔文,曲昭伟,陈永恒,熊帅,陶楚青. 非严格优先权下无左转专用相位直行车辆轨迹模型建立[J]. 吉林大学学报(工学版), 2019, 49(3): 673-679.
[7] 吴骅跃,段里仁. 基于RGB熵和改进区域生长的非结构化道路识别方法[J]. 吉林大学学报(工学版), 2019, 49(3): 727-735.
[8] 罗小芹,王殿海,金盛. 面向混合交通的感应式交通信号控制方法[J]. 吉林大学学报(工学版), 2019, 49(3): 695-704.
[9] 徐洪峰, 高霜霜, 郑启明, 章琨. 信号控制交叉口的复合动态车道管理方法[J]. 吉林大学学报(工学版), 2018, 48(2): 430-439.
[10] 宋现敏, 邓晓磊, 高铭, 曲昭伟. 基于动态反应时间的全速度差模型[J]. 吉林大学学报(工学版), 2017, 47(6): 1703-1709.
[11] 徐洪峰, 章琨, 姚荣涵. 环形交叉口的所有进口道适时交通信号控制策略[J]. 吉林大学学报(工学版), 2016, 46(1): 76-84.
[12] 陶涛,徐洪泽. 高速列车浸入与不变自适应容错控制方法[J]. 吉林大学学报(工学版), 2015, 45(2): 554-561.
[13] 徐洪峰, 耿现彩, 何龙. 单进口轮流放行方式的四路环形交叉口交通信号控制[J]. 吉林大学学报(工学版), 2014, 44(4): 953-962.
[14] 王霄维, 王殿海, 江晟, 金盛. 基于混合优化模型的平面交叉口控制方法[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 170-174.
[15] 徐洪峰, 耿现彩. 面向T形交叉口的机动车相位固定最小绿灯时间计算 [J]. , 2012, (03): 600-605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!