吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (6): 1324-1336.doi: 10.13229/j.cnki.jdxbgxb20210067

• 交通运输工程·土木工程 • 上一篇    

面向网联汽车环境的单点全感应式信号配时技术

徐洪峰1(),陈虹瑾1,张栋1,陆千惠1,安娜2,耿现彩3   

  1. 1.大连理工大学 交通运输学院,辽宁 大连 116024
    2.沈阳市规划设计研究院有限公司,沈阳 110004
    3.青岛市城市规划设计研究院,山东 青岛 266000
  • 收稿日期:2021-01-22 出版日期:2022-06-01 发布日期:2022-06-02
  • 作者简介:徐洪峰(1978-),男,副教授,博士. 研究方向:交通管理与控制. E-mail: hfxu@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(61374193);教育部人文社会科学基金项目(19YJCZH201)

Fully⁃actuated signal timing technique for isolated signalized intersections in connected vehicle environment

Hong-feng XU1(),Hong-jin CHEN1,Dong ZHANG1,Qian-hui LU1,Na AN2,Xian-cai Geng3   

  1. 1.School of Transportation and Logistics,Dalian University of Technology,Dalian 116024,China
    2.Shenyang Urban Planning and Design Institute Co. ,Ltd. ,Shenyang 110004,China
    3.Qingdao Urban Planning & Design Research Institute,Qingdao 266000,China
  • Received:2021-01-22 Online:2022-06-01 Published:2022-06-02

摘要:

面向网联汽车渗透率达到100%的环境,为了生成更多合理的绿灯切断决定,提出了一种新的单点全感应式信号配时技术。定义了绿灯切断决策区和扩展车长的概念,综合考虑了导向车道的长度、数量以及绿灯切断决策区内网联汽车的数量、位置、车身长度、速度等因素,建立了扩展车长转化率计算方法。在此基础上,评估了机动车相位的交通需求,设计了单点全感应逻辑。选取城市干路相交的典型四路交叉口,利用Vissim和Python创建了仿真试验环境,通过D-最优设计生成试验方案,为新技术交叉口和传统技术交叉口共提供了162 000个试验场景。试验结果显示,相比于传统技术,采用扩展车长转化率推荐阈值的新技术能够降低交叉口车均延误,交叉口的交通负荷等级越高,降幅越明显。

关键词: 交通运输系统工程, 全感应式信号配时, 网联汽车, 独立信号控制交叉口, 交通仿真

Abstract:

To generate more green termination decisions that are appropriate, a fully-actuated signal timing technique for isolated signalized intersections in an environment with 100% penetration rate of connected vehicles is proposed. The concepts of green termination decision zone and vehicle extended length are defined. The lengths and number of approach lanes as well as the number, position, physical length, and speed of connected vehicles in green termination decision zone are comprehensively considered to calculate the conversion rate of vehicle extended length. On this basis, the demand of current vehicle phases is evaluated and a fully-actuated logic is designed. Regarding a typical four-leg intersection of two arterials, the simulation experiment environment is created by Vissim and Python. D-optimal design is performed to develop an experimental scheme. A total of 162,000 experimental scenarios are developed for the intersections with the new and conventional signal timing techniques, respectively. The experimental results indicate that the new technique with the recommended conversion ratio threshold of vehicle extended length has an advantage over the conventional one in reducing the average vehicle delay. The heavier the intersection-wide traffic load, the greater the advantage of the new technique over the conventional one.

Key words: engineering of communications and transportation system, fully-actuated signal timing, connected vehicles, isolated signalized intersection, traffic simulation

中图分类号: 

  • U491

图1

绿灯切断决策区"

图2

典型的四路交叉口"

图3

新技术和传统技术生成绿灯切断决定的案例场景"

图4

试验交叉口的道路空间布局"

表1

交通需求场景的构成要素"

构成要素下限上限步长
交叉口加载机动车交通量总和/(veh·h-1100600010
东西道路加载机动车交通量占比/%40601
北进口加载机动车交通量占比/%35651
东进口加载机动车交通量占比/%35651
北、东、南、西进口的左转机动车占比/%15250.2
北、东、南、西进口的右转机动车占比/%5100.2
大型车占比/%150.2
中型车占比/%5100.2

图5

试验交叉口的相位显示顺序"

图6

试验交叉口的绿灯间隔时长"

表2

Wiedemann74跟驰行为模型的安全距离取值"

序号安全距离饱和流率/(pc·h-1·ln-1
附加部分/m倍数部分/m
12.53.51814.65
22.33.31894.70
32.13.11979.50
41.92.92072.20
51.72.72172.00

表3

新技术交叉口的车均延误平均值 (s)"

交通负荷等级
导向车道长度/m506070506070506070
扩展车长转化率阈值0.120.79020.73620.35826.35926.47825.58347.58546.86942.640
0.1520.58920.57220.32125.37825.43325.01444.32243.89841.162
0.220.53720.54420.37925.08924.97124.55843.63742.23938.611
0.2520.53420.56320.37024.74724.63824.24142.54840.46036.590
0.320.50820.56620.33524.46524.40224.00341.59338.70735.319
0.3520.50220.49820.33924.33624.24024.06340.63537.78735.213
0.420.46420.49820.32324.19324.25924.13939.93138.07735.520
0.4520.42220.49020.31724.10824.34824.29740.93839.07536.455
0.520.41820.48220.32224.21224.47824.45743.70341.29438.279
0.5520.42420.48820.32824.37024.67024.62748.99946.19442.406
0.620.40920.48820.33124.66124.92624.84856.17655.13450.444
0.6520.40620.48920.33225.19825.35025.13963.15463.59260.112
0.720.41020.49120.33225.56725.64925.46066.18867.38565.226
0.7520.41220.49120.33325.79325.90125.69367.42468.45566.970
0.820.41120.49220.33325.93326.08025.83467.86568.76567.281
0.8520.41220.49220.33326.05726.16925.90868.03068.83767.207
0.920.41120.49220.33326.10326.26125.98167.93768.71367.238

表4

新技术交叉口的扩展车长转化率推荐阈值"

导向车道长度/m交通负荷等级
500.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.90.450.4
600.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.90.35、0.40.35
700.1、0.15、0.25、0.3、0.35、0.4、0.45、0.5、0.550.30.3、0.35

表5

新技术交叉口和传统技术交叉口的车均延误平均值 (s)"

导向车道长度/m交通负荷等级新技术交叉口传统技术交叉口
5020.42220.675
24.10825.291
39.93145.867
6020.49820.771
24.24025.458
37.78744.996
7020.33520.632
24.00325.255
35.31941.600

表6

新技术交叉口和传统技术交叉口的车均延误差值分布"

交通负荷等级
导向车道长度/m506070506070506070
不同幅度车均延误差值的占比/%(-8,-6)s0000000.100
[-6,-4)s0.100.10000.100
[-4,-2)s1.41.01.70000.200
[-2,0)s33.334.232.34.14.15.40.500.3
[0,2)s63.962.862.783.080.277.810.76.28.8
[2,4)s1.32.03.212.815.716.835.331.937.1
[4,6)s0000.10018.821.723.8
[6,8)s00000010.911.19.2
[8,36)s00000023.429.120.8
1 . 城市道路交通标志和标线设置规范 [S].
2 Steering committee for traffic control and traffic safety. Guidelines for Traffic Signals (RiLSA)[M]. Köln:Road and Transportation Research Association, 2003.
3 Urbanik T, Tanaka A, Lozner B, et al. Signal timing manual, second edition[R]. NCHRP Report 812: 03-103, Transportation Research Board, Washington, DC, 2015.
4 Smaglik E, Bullock D, Urbanik T. Evaluation of lane-by-lane vehicle detection for actuated controllers serving multilane approaches[J]. Transportation Research Record: Journal of the Transportation Research Board, 2005(1925): 123-133.
5 Smaglik E, Bullock D, Sturdevant J, et al. Implementation of lane-by-lane detection at actuated controlled intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2035(1): 81-87.
6 Tian Z, Urbanik T. Green extension and traffic detection schemes at signalized intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2006, 1978(1): 16-24.
7 Cesme B, Furth P. Multiheadway gap-out logic for actuated control on multilane approaches[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2311(1): 117-123.
8 Yun I, Best M, Park B. Evaluation of adaptive maximum feature in actuated traffic controller[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2035(2035): 134-140.
9 Zhang G H, Wang Y H. Optimizing minimum and maximum green time settings for traffic actuated control at isolated intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 164-173.
10 徐洪峰, 柳爽, 张栋, 等. 单点全感应式信号控制方法的参数取值[J]. 吉林大学学报: 工学版, 2019, 49(1): 45-52.
Xu Hong-feng, Liu Shang, Zhang Dong, et al. Configuring parameters of fully actuated control at isolated signalized intersections[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 45-52.
11 Guler S, Menendez M, Meier L. Using connected vehicle technology to improve the efficiency of intersections[J]. Transportation Research Part C-Emerging Technologies, 2014, 46: 121-131.
12 Feng Y, Head K, Khoshmagham S, et al. A real-time adaptive signal control in a connected vehicle environment[J]. Transportation Research Part C-Emerging Technologies, 2015, 55: 460-473.
13 Yang K, Guler S, Menendez M. Isolated intersection control for various levels of vehicle technology: conventional, connected, and automated vehicles[J]. Transportation Research Part C-Emerging Technologies, 2016, 72: 109-129.
14 Feng Y, Zheng J, Liu H. Real-time detector-free adaptive signal control with low penetration of connected vehicles[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(18): No. EE0007212.
15 Liang X, Guler S, Gayah V. A heuristic method to optimize generic signal phasing and timing plans at signalized intersections using connected vehicle technology[J]. Transportation Research Part C-Emerging Technologies, 2020, 111: 156-170.
16 Guo Q Q, Li L, Ban X G. Urban traffic signal control with connected and automated vehicles: a survey[J]. Transportation Research Part C-Emerging Technologies, 2019, 101: 313-334.
17 Yao Z, Jiang Y, Zhao B, et al. A dynamic optimization method for adaptive signal control in a connected vehicle environment[J]. Journal of Intelligent Transportation Systems, 2019, 24(2): 184-200.
18 Kamal M, Hayakawa T, Imura J. Development and evaluation of an adaptive traffic signal control scheme under a mixed-automated traffic scenario[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(2): 590-602.
19 Goodall N, Smith B, Park B. Traffic signal control with connected vehicles[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013, 2381: 65-72.
20 . 道路交通信号灯设置与安装规范 [S].
21 . 道路交通信号控制机 [S].
22 徐洪峰, 耿现彩. 面向T形交叉口的机动车相位固定最小绿灯时间计算[J]. 吉林大学学报: 工学版, 2011, 42(3): 600-605.
Xu Hong-feng, Geng Xian-cai. Absolute minimum green time calculation for vehicles at 3-leg intersection[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 42(3): 600-605.
23 徐洪峰, 王殿海. BRT优先控制交叉口的机动车相位固定最小绿灯时间计算方法[J]. 吉林大学学报: 工学版, 2009, 39(): 92-97.
Xu Hong-feng, Wang Dian-hai. Absolute minimum green time calculation for vehicle phase at signalized intersections with bus rapid transition signal priority[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(Sup.1): 92-97.
24 秦严严, 王昊, 王炜, 等. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17(3): 121-130.
Qin Yan-yan, Wang Hao, Wang Wei, et al. Review of car-following models of adaptive cruise control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 121-130.
25 秦严严, 王昊, 冉斌. CACC车辆跟驰建模及混合交通流分析[J]. 交通运输系统工程与信息, 2018, 18(2): 60-65.
Qin Yan-yan, Wang Hao, Ran Bin. Car-following modeling for CACC vehicles and mixed traffic flow analysis[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 60-65.
26 王祺, 谢娜, 侯德藻, 等. 自适应巡航及协同式巡航对交通流的影响分析[J]. 中国公路学报, 2019, 32(6): 188-197, 205.
Wang Qi, Xie Na, Hou De-zao, et al. Effects of adaptive cruise control and cooperative adaptive cruise control on traffic flow[J]. China Journal of Highway and Transport, 2019, 32(6): 188-197, 205.
27 Vanniyasingam T, Daly C, Jin X, et al. Investigating the impact of design characteristics on statistical efficiency within discrete choice experiments: A systematic survey[J]. Contemporary Clinical Trials Communications, 2018, 10: 17-28.
28 Liu X, Yue R X, Chatterjee K. Geometric characterization of D-optimal designs for random coefficient regression models[J]. Statistics and Probability Letters, 2020, 159: No. 108696.
29 Gao L, Zhou J. Minimax D-optimal designs for multivariate regression models with multi-factors[J]. Journal of Statistical Planning and Inference, 2020, 209: 160-173.
[1] 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323.
[2] 尹超英,邵春福,黄兆国,王晓全,王晟由. 基于梯度提升决策树的多尺度建成环境对小汽车拥有的影响[J]. 吉林大学学报(工学版), 2022, 52(3): 572-577.
[3] 贾洪飞,邵子函,杨丽丽. 终点不确定条件下网约车合乘匹配模型及算法[J]. 吉林大学学报(工学版), 2022, 52(3): 564-571.
[4] 冯天军,孙学路,黄家盛,田秀娟,宋现敏. 基于三种过街方式的两相位信号交叉口延误[J]. 吉林大学学报(工学版), 2022, 52(3): 550-556.
[5] 李兴华,冯飞宇,成诚,王洧,唐鹏程. 网约拼车服务选择偏好分析及建模[J]. 吉林大学学报(工学版), 2022, 52(3): 578-584.
[6] 李先通,全威,王华,孙鹏程,安鹏进,满永兴. 基于时空特征深度学习模型的路径行程时间预测[J]. 吉林大学学报(工学版), 2022, 52(3): 557-563.
[7] 薛锋,何传磊,黄倩,罗建. 多式轨道交通网络的耦合协调度[J]. 吉林大学学报(工学版), 2021, 51(6): 2040-2050.
[8] 贾彦峰,曲大义,林璐,姚荣涵,马晓龙. 基于运行轨迹的网联混合车流速度协调控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2051-2060.
[9] 陆文琦,周天,谷远利,芮一康,冉斌. 基于张量分解理论的车道级交通流数据修复算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1708-1715.
[10] 姚荣涵,祁文彦,郑刘杰,曲大义. 基于车道选择及行车轨迹的左转导向线设置方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1651-1663.
[11] 卢凯,吴蔚,林观荣,田鑫,徐建闽. 基于KNN回归的客运枢纽聚集人数组合预测方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1241-1250.
[12] 彭博,张媛媛,王玉婷,唐聚,谢济铭. 基于自动编码机-分类器的视频交通状态自动识别[J]. 吉林大学学报(工学版), 2021, 51(3): 886-892.
[13] 张健,吴坤润,杨敏,冉斌. 智能网联环境下交叉口双环自适应控制模型[J]. 吉林大学学报(工学版), 2021, 51(2): 541-548.
[14] 王殿海,沈辛夷,罗小芹,金盛. 车均延误最小情况下的相位差优化方法[J]. 吉林大学学报(工学版), 2021, 51(2): 511-523.
[15] 宋现敏,张明业,李振建,王鑫,张亚南. 动态公交专用道的设置及其仿真分析评价[J]. 吉林大学学报(工学版), 2020, 50(5): 1677-1686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!