吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (3): 933-940.doi: 10.13229/j.cnki.jdxbgxb20221057
• 通信与控制工程 • 上一篇
Chun-yang WANG1,2(),Wen-qian QIU2,Xue-lian LIU1(),Bo XIAO3,Chun-hao SHI2
摘要:
针对点云数据中的地面点会影响环境感知的精度与速度的问题,提出了一种基于平面拟合的地面点云精确分割方法。首先,根据投影距离将场景点云分为多个区域;其次,根据区域内的平均高度、分割地面点和地平面法向量的方向,确定地面平面拟合点并对地面平面进行拟合;最后,根据点到地面平面的距离,实现地面分割。本文基于KITTI数据集和实采数据将本文算法与RANSAC、GPF、R-GPF和PatchWork四种算法进行了对比,验证了区域划分、拟合点筛选以及地面平面法向量方向筛选对地面分割的有效性。实验结果表明,进行区域划分后,可以分割远距离稀疏地面;进行拟合点筛选后,在低迭代的条件下地面分割准确率达到0.9417;进行地平面法向量方向筛选后,能够避免将墙面拟合成地面;本文方法在F1分数、召回率和准确率上优于所对比的4种算法,速度可以达到42.78 Hz,能够精确、快速地对地面进行分割。
中图分类号:
1 | 曾昊旻,李松,张智宇,等.车载激光雷达Risley棱镜光束扫描系统[J]. 光学精密工程, 2019, 27(7):1444-1450. |
Zeng Hao-min, Li Song, Zhang Zhi-yu, et al. Risley-prism-based beam scanning system for mobile lidar[J]. Optics and Precision Engineering, 2019, 27(7):1444-1450. | |
2 | Douillard B, Underwood J, Kuntz N, et al. On the segmentation of 3DLIDAR point clouds[C]∥2011 IEEE International Conference on Robotics and Automation, Shanghai,China,2011:2798-2805. |
3 | Byun J, Na K I, Seo B S, et al. Drivable road detection with 3D point clouds based on the MRF for intelligent vehicle[J]. Springer Tracts in Advanced Robotics, 2015, 105: 49-60. |
4 | Asvadi A, Peixoto P, Nunes U . et al . Detection and tracking of moving objects using 2.5D motion grids[C]∥2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria,Spain,2015: 788-793. |
5 | 张名芳,付锐,郭应时,等. 基于三维不规则点云的地面分割算法[J].吉林大学学报:工学版,2017,47(5):1387-1394. |
Zhang Ming-fang, Fu Rui, Guo Ying-shi, et al. Road segmentation method based on irregular three dimensional point cloud[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(5): 1387-1394. | |
6 | 伍锡如,薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学精密工程, 2022, 30(4): 489-497. |
Wu Xi-ru, Xue Qi-wei. 3D vehicle detection for unmanned driving systerm based on lidar[J].Optics and Precision Engineering, 2022, 30(4): 489-497. | |
7 | 邹兵,陈鹏,刘登洪. 一种基于栅格投影的快速地面点云分割算法[J]. 城市勘测, 2021(3): 112-116. |
Zou Bing, Chen Peng, Liu Deng-hong. A fast ground point cloud segmentation algorithm based on raster projection[J]. Urban Surveys, 2021(3): 112-116. | |
8 | Leng Zhi-xin, Li Shu, Li Xin, et al. An improved fast ground segmentation algorithm for 3D point cloud[C]∥2020 Chinese Control and Decision Conference, Hefei, China, 2020: 5016-5020. |
9 | Cheng Jie, He Dong, Lee Chang-hee. A simple ground segmentation method for LiDAR3D point clouds[C]∥2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications, Guangzhou, China, 2020:171-175. |
10 | Zhou Ying, Wang Dan, Xie Xiang, et al. A fast and accurate segmentation method for ordered LiDAR point cloud of large-scale scenes[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(11):1981-1985. |
11 | Paigwar A, Erkent Ö, Sierra-Gonzalez D, et al. GndNet: fast ground plane estimation and point cloud segmentation for autonomous vehicles[C]∥2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas,USA,2020:2150-2156. |
12 | Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Commun, ACM, 1981,24(6): 381-395. |
13 | Zermas D, Izzat I, Papanikolopoulos N. Fast segmentation of 3D point clouds: a paradigm on LiDAR data for autonomous vehicle applications[C]∥2017 IEEE International Conference on Robotics and Automation, Maria Bay Sands,Singapore,2017: 5067-5073. |
14 | Lim H, Hwang S, Myung H. ERASOR: egocentric ratio of pseudo occupancy-based dynamic object removal for static 3D Point cloud map building[J]. IEEE Robotics and Automation Letters, 2021,6(2):2272-2279. |
15 | Lim H, Oh M, Myung H. PatchWork: concentric zone-based region-wiseground segmentation with ground likelihood estimation using a 3D LiDAR sensor[J]. IEEE Robotics and Automation Letters,2021,6(4):6458-6465. |
[1] | 李雪梅,王春阳,刘雪莲,施春浩,李国瑞. 基于超体素双向最近邻距离比的点云配准方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1918-1925. |
[2] | 李雪梅,王春阳,刘雪莲,谢达. 基于SESTH的线性调频连续波激光雷达信号时延估计[J]. 吉林大学学报(工学版), 2022, 52(4): 950-958. |
[3] | 魏民祥,杨佳伟,陈凯,王志浩,沙朝. 基于改进大脑情感学习模型的车辆纵向跟随[J]. 吉林大学学报(工学版), 2022, 52(12): 2994-3005. |
[4] | 林乐平,卢增通,欧阳宁. 面向非配合场景的人脸重建及识别方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2941-2946. |
[5] | 窦慧晶,丁钢,高佳,梁霄. 基于压缩感知理论的宽带信号波达方向估计[J]. 吉林大学学报(工学版), 2021, 51(6): 2237-2245. |
[6] | 金立生,郭柏苍,王芳荣,石健. 基于改进YOLOv3的车辆前方动态多目标检测算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1427-1436. |
[7] | 刘志伟,刘建荣,邓卫. 基于潜在类别的无人驾驶汽车选择行为[J]. 吉林大学学报(工学版), 2021, 51(4): 1261-1268. |
[8] | 于向军,槐元辉,姚宗伟,孙中朝,俞安. 工程车辆无人驾驶关键技术[J]. 吉林大学学报(工学版), 2021, 51(4): 1153-1168. |
[9] | 朱伟刚,朱超,张亚球,魏海斌. 基于卷积格网曲面拟合滤波算法的数字高程模型构建及质量评价[J]. 吉林大学学报(工学版), 2021, 51(3): 1073-1080. |
[10] | 曾小华,李晓建,杜劭峰,马涛,王振伟,宋大凤. 多轮混合动力驱动无人驾驶框架车整车控制器开发[J]. 吉林大学学报(工学版), 2021, 51(1): 63-71. |
[11] | 金心宇,谢慕寒,孙斌. 基于半张量积压缩感知的粮情信息采集[J]. 吉林大学学报(工学版), 2021, 51(1): 379-385. |
[12] | 王晓辉,吴禄慎,陈华伟. 基于法向量距离分类的散乱点云数据去噪[J]. 吉林大学学报(工学版), 2020, 50(1): 278-288. |
[13] | 徐谦,李颖,王刚. 基于深度学习的行人和车辆检测[J]. 吉林大学学报(工学版), 2019, 49(5): 1661-1667. |
[14] | 杨顺,蒋渊德,吴坚,刘海贞. 基于多类型传感数据的自动驾驶深度强化学习方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1026-1033. |
[15] | 郭立民,陈鑫,陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报(工学版), 2019, 49(3): 1000-1008. |
|