吉林大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (4): 1102-1106.

• 论文 • 上一篇    下一篇

基于支持向量机粒子滤波的目标跟踪算法

蒋蔚,伊国兴,曾庆双   

  1. 哈尔滨工业大学 空间控制与惯性技术研究中心|哈尔滨 150001
  • 收稿日期:2009-10-03 出版日期:2011-07-01 发布日期:2011-07-01
  • 作者简介:蒋蔚(1979-)|男|博士研究生.研究方向:非线性滤波与导航系统.E-mail:mailjiangwei@163.com
  • 基金资助:

    “十一五”国防预研项目(51309030102,51309030203).

Target tracking algorithm based on support vector machine particle filter

JIANG Wei, YI Guo-xing, ZENG Qing-shuang   

  1. Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China
  • Received:2009-10-03 Online:2011-07-01 Published:2011-07-01

摘要:

针对传统粒子滤波目标跟踪算法存在的粒子退化问题,提出了一种新的基于支持向量机的粒子滤波目标跟踪算法。该算法利用滤波过程中的预测粒子集及其权值,使用支持向量机估计出系统状态的后验概率密度,再根据该概率密度重采样更新粒子集,以提高粒子的多样性,从而克服粒子的退化现象。仿真结果表明,该算法能显著增加有效粒子的数量,其目标跟踪精度优于马尔可夫链蒙特卡罗移动方法以及正则粒子滤波算法。

关键词: 自动控制技术, 目标跟踪, 粒子滤波, 支持向量机, 概率密度估计

Abstract:

To solve the problems of particle degeneration in traditional particle filter, an improved target tracking algorithm was proposed based on density estimation with support vector machines. Using support vector machines, the posterior probability density function of the state was estimated with predicted particles and their important weights during filter iteration. After resampling the new particles from this density model, the degeneration of the filter was eliminated effectively by these diversiform particles. Simulation results demonstrate that the proposed algorithm can increase the quantity of effective particles obviously, and the new filter is superior to the Markov Chain Monte Carlo particle filter and regularized filter.

Key words: automatic control technology, target tracking, particle filter, support vector machines, density estimation

中图分类号: 

  • TP273
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[5] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[6] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[7] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[8] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[9] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[10] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[11] 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[12] 蔡振闹, 吕信恩, 陈慧灵. 基于反向细菌优化支持向量机的躯体化障碍预测模型[J]. 吉林大学学报(工学版), 2018, 48(3): 936-942.
[13] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[14] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[15] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!