›› 2012, Vol. ›› Issue (06): 1602-1607.

• 论文 • 上一篇    下一篇

基于开关式周围抑制的轮廓检测方法

曲智国, 王平, 高颖慧, 王鹏, 沈振康   

  1. 国防科学技术大学 电子科学与工程学院 ATR实验室, 长沙 410073
  • 收稿日期:2011-08-27 出版日期:2012-11-01
  • 通讯作者: 王平(1976-),男,副教授.研究方向:图像处理,模式识别,成像制导自动目标识别.E-mail:wangping@nudt.edu.cn E-mail:wangping@nudt.edu.cn
  • 基金资助:
    国家自然科学基金项目(61103082).

Contour detection based on switching surround suppression

QU Zhi-guo, WANG Ping, GAO Ying-hui, WANG Peng, SHEN Zhen-kang   

  1. ATR Laboratory of College of Electronics Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2011-08-27 Online:2012-11-01

摘要: 传统的基于梯度的边缘检测算子旨在提取图像中所有由灰度变化引起的边缘,并不区分目标轮廓边缘和由杂波造成的干扰边缘。为提高这类算子在自然图像中检测主要轮廓边缘的性能,提出了基于开关式周围抑制的轮廓检测算法。与其他基于周围抑制的方法相比,该方法仅对干扰边缘进行抑制,对轮廓边缘不进行抑制,从而进一步提高了传统边缘算子的轮廓检测性能。利用自然图像和标准的参考轮廓边缘图像对该方法进行性能评估,结果表明,本文方法的轮廓检测性能优于传统的边缘算子及其他基于周围抑制的方法。

关键词: 信息处理技术, 边缘检测, 轮廓检测, SUSAN准则, 开关式周围抑制

Abstract: The standard gradient-based edge detectors react to all luminance changes, irrespective of whether they are due to the contours of the objects represented in a scene or due natural textures like grass, foliage, water, and so forth. To improve their performance in detection of object contours and region boundaries in natural scenes, an algorithm called switching surround suppression was proposed which can be easily incorporated into them. Different from previous methods that deploy surround suppression, our method only exerts suppression on texture edges while leaving contours unaffected, which further improves the contour detection performance of standard gradient-based edge detectors. The proposed method was evaluated by the natural images and the standard reference contour edge images. The results showed that the proposed method is better than the standard gradient-based edge detectors as well as other methods that deploy surround suppression.

Key words: information processing, edge detection, contour detection, SUSAN criterion, switching surround suppression

中图分类号: 

  • TN911.73
[1] Ziou D, Tabbone S. Edge detection technique-An overview[J]. Int J Pattern Recognit Image Anal, 1998, 8:537-559.
[2] Ehsan Nadernejad. Edge detection techniques: evaluations and comparisons[J]. Applied Mathematical Sciences, 2008, 2(31): 1507-1520.
[3] Tony Lindeberg. Edge detection and ridge detection with automatic scale selection[J]. Int J of Computer Vision, 1998,30(2): 117-156.
[4] Raz Koren, Yitzhak Yitzhaky. Automatic selection of edge detector parameters based on spatial and statistical measures[J]. Computer Vision and Image Understanding, 2006, 102: 204-213.
[5] Benoit Tremblais, Bertrand Augereau. A fast multi-scale edge detection algorithm[J]. Pattern Recognition Letters, 2004, 25:603-618.
[6] Papari G, Campisi P, Petkov N, et al. A biologically motivated multiresolution approach to contour detection[J]. EURASIP Journal on Advances in Signal Processing, 2007:1-28.
[7] Jiang Bo, Rahman Zia-ur. Multi-scale edge detection with local noise estimate[C]//Proc of SPIE 7798, 2010:1-12.
[8] Medina-Carnicer R, Madrid-Cuevas F J. Unimodal thresholding for edge detection[J]. Pattern Recognition, 2008, 41:2337-2346.
[9] Medina-Carnicer R, Madrid-Cuevas F J, Carmona-Poyato A, et al. On candidates selection for hysteresis thresholds in edge detection[J]. Pattern Recognition, 2009, 42:1284-1296.
[10] Medina-Carnicer R, Muñoz-Salinas R, Yeguas-Bolivar E, et al. A novel method to look for the hysteresis thresholds for the Canny edge detector[J]. Pattern Recognition, 2011, 44:1201-1211.
[11] Grigorescu C, Petcov N, Westenberg M A. Contour and boundary detection improved by surround suppression of texture edges[J]. Image and Vision Computing, 2004, 22(8):609-622.
[12] Smith S, Brady J. SUSAN-a new approach to low-level image processing[J]. International Journal of Computer Vision, 1997, 23 (1): 45-78.
[13] Canny J. A computational approach to edge detection[J]. IEEE Trans Pattern Anal Mach Intell, 1986, 8(6): 679-698.
[14] Grigorescu C, Petcov N M, Westenberg A. Contour image database [EB/OL]. [2004-10-26]. http://www.cs.rug.nl/~imaging.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!