吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 344-348.

• 论文 • 上一篇    下一篇

Zn-22Al泡沫夹芯复合板的三点弯曲性能

刘家安1,2, 于思荣1,2, 朱先勇3   

  1. 1. 吉林大学 材料科学与工程学院, 长春 130022;
    2. 吉林大学 汽车材料教育部重点实验室, 长春 130022;
    3. 吉林大学 机械科学与工程学院, 长春 130022
  • 收稿日期:2011-01-16 出版日期:2012-03-01 发布日期:2012-03-01
  • 通讯作者: 于思荣 (1964-),男,教授,博士生导师.研究方向:复合材料,表面工程.E-mail:yusr@jlu.edu.cn E-mail:yusr@jlu.edu.cn
  • 作者简介:刘家安 (1980-),男,讲师,博士.研究方向:多孔金属材料.E-mail:liuja@jlu.edu.cn
  • 基金资助:

    国家自然科学基金面上项目(51075184);教育部中央高校基本科研业务费专项资金项目(200903011);吉林省科技厅项目(20100550).

Three-point bending properties of Zn-22Al foam sandwich panel

LIU Jia-an1,2, YU Si-rong1,2, ZHU Xian-yong3   

  1. 1. College of Materials Science and Engineering, Jilin University, Changchun 130022, China;
    2. Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130022, China;
    3. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2011-01-16 Online:2012-03-01 Published:2012-03-01

摘要: 以Zn-22Al(ZA22)基泡沫材料为芯材,LY12铝板为面板制备了泡沫夹芯复合板。研究了泡沫夹芯复合板的三点弯曲行为,观察了复合板的破坏模式,分析了复合板弯曲性能的影响因素,运用层合梁刚度优化理论探讨了其机理。研究结果表明,ZA22泡沫夹芯复合板的三点弯曲载荷-位移曲线可按线性段、非线性段和失稳段表示其特征;其弯曲极限载荷随孔隙率的增大而减小,并且泡沫夹芯复合板表现出明显的层合效果。三点弯曲载荷作用下,泡沫夹芯复合板的主要失效模式为芯材的剪切破坏。

关键词: 复合材料, 泡沫夹芯复合板, 三点弯曲试验, 锌铝合金

Abstract: The sandwich panel were fabricated using Zn-22Al matrix foam as the core material and the LY12 aluminum panel as the shell. The bending behavior of the sandwich panel was studied by three-point bending test. The failure mode of the sandwich panel was observed and the influencing factors were analyzed. Applying the stiffness optimization theory of sandwich panels, the deformation mechanism of the sandwich panels was discussed. The results showed that the bending curves of the sandwich panel can be divided into three regions, including the linear deformation region, the non-linear deformation region and the unsteady region. The ultimate load of the sandwich panel decreases when the porosity of the foam is rising. The sandwich panel shows a favorable cooperative effect on mechanical property. The primary failure mode of the sandwich panel is the core shearing.

Key words: composite material, foam sandwich panel, three-point bending test, Zinc-aluminum alloy

中图分类号: 

  • TB331
[1] Yu J L, Wang X, Wei Z G, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with Aluminum-foam core[J]. International Journal of Impact Engineering, 2003, 283: 331-347.

[2] 尚金堂, 何德坪. 泡沫铝层合梁的三点弯曲变形[J]. 材料研究学报, 2003, 17(1):31-38. Shang Jin-tang, He De-ping. Deformation of sandwich beams with Al foam cores in three-point bending[J]. Chinese Journal of Materials Research, 2003, 17(1): 31-38.

[3] 张敏,祖国胤,姚广春. 新型泡沫铝三明治板的弯曲性能[J]. 过程工程学报,2007,7:628-631. Zhang Min, Zu Guo-yin, Yao Guang-chun. Bending properties of novel Aluminum foam sandwich panels[J]. The Chinese Journal of Process Engineering, 2007, 7: 628-631.

[4] Chen C, Harte A M, Fleck N A. The plastic collapse of sandwich beams with a metallic foam core[J]. International Journal of Mechanical Sciences, 2001, 43(6): 1483-1506.

[5] Sha J,Yip T. In situ surface displacement analysis on sandwich and multilayer beams composed of Aluminum foam core and metallic face sheets under bending loading[J]. Materials Science & Engineering A, 2004, 386: 91-103.

[6] 查海波,凤仪,朱琪琪, 等. 泡沫铝层合梁的弯曲性能[J]. 中国有色金属学报,2007,17:290-295. Zha Hai-bo, Feng Yi, Zhu Qi-qi, et al. Bending capability of foam Aluminum sandwich beams[J]. The Chinese Journal of Nonferrous Metals, 2007, 17: 290-295.

[7] Mccormack T M, Miller R, Kesler O, et al. Failure of sandwich beams with metallic foam cores[J]. International Journal of Solids and Structures, 2001, 38(29): 4901-4920.

[8] Allen H G. Analysis and Design of Structural Sandwich Panels[M]. Oxford:Pergamon Press, 1969.

[9] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. Cambridge: Cambridge University Press, 1997.

[10] Kitazono K, Takiguchi Y. Strain rate sensitivity and energy absorption of Zn-22Al foams[J]. Scripta Materialia, 2006, 55: 501-504.

[11] Daoud A. Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting[J]. Materials Science and Engineering A, 2008, 488: 281-295.

[12] Yu Si-rong, Liu Jia-an, Luo Yan-ru, et al. Compressive behavior and damping property of ZA22/SiCp composite foams[J]. Materials Science and Engineering A, 2007, 457(1/2): 325-328.
[1] 胡志清, 郑会会, 徐亚男, 张春玲, 党停停. 表面微沟槽对Al/CFRP胶结性能的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[2] 刘耀辉, 陈乔旭, 宋雨来, 沈艳东. 火山灰-SBS、胶粉-SBS和SBS改性沥青压缩变形行为及机理[J]. 吉林大学学报(工学版), 2017, 47(6): 1861-1867.
[3] 李静, 王哲. 真三轴加载条件下混凝土的力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[4] 杨悦, 李雪, 徐晓丹. Ti-B-C-N粉末烧结的微观组织及其性能[J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
[5] 陈江义, 刘保元. 纤维断裂损伤对复合材料板中导波频散特性的影响[J]. 吉林大学学报(工学版), 2017, 47(1): 180-184.
[6] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[7] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[8] 彭爱东, 刘贺男. 基于水包油微乳液法的方形苝纳米颗粒的合成与荧光性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1583-1586.
[9] 刘利萍, 刘勇兵, 姬连峰, 曹占义, 杨晓红. 原位颗粒增强钛基复合材料高温流变行为[J]. 吉林大学学报(工学版), 2016, 46(4): 1197-1201.
[10] 赵刚, 孙壮志, 郭华君, 隋志阳, 李芳, 赵华兴. 基于离子聚合物金属基复合材料线性驱动单元的性能[J]. 吉林大学学报(工学版), 2016, 46(1): 221-227.
[11] 闫光,韩小进,闫楚良,祝连庆. 含口盖复合材料圆柱壳轴压屈曲性能分析[J]. 吉林大学学报(工学版), 2015, 45(1): 187-192.
[12] 闫光, 范舟, 李钟海, 程小全, 刘克格, 左春柽. 复合材料加口盖柱壳的设计与分析[J]. , 2012, (06): 1437-1441.
[13] 刘曙光, 闫敏, 闫长旺, 郭荣跃. 聚乙烯醇纤维强化水泥基复合材料的抗盐冻性能[J]. 吉林大学学报(工学版), 2012, 42(01): 63-67.
[14] 马丽, 周凌, 何慧, 罗远芳, 贾德民. 竹粉高温蒸煮对竹粉/ABS木塑复合材料性能的影响[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 205-209.
[15] 刘晓波1,2,赵宇光1,杨雯1,张家陶1. (Mg2Si+SiCp)/Mg复合材料的耐磨性[J]. 吉林大学学报(工学版), 2011, 41(6): 1618-1624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!