›› 2012, Vol. 42 ›› Issue (04): 871-876.

• 论文 • 上一篇    下一篇

基于超声雾化的碳氢燃料多液滴流制备系统

胡宗杰1, 肖春江1, 李治龙1, NilsHaneklaus1,2, 龚慧峰1, 吴志军1   

  1. 1. 同济大学 汽车学院, 上海 200092;
    2. Institute of Thermal Turbomachinery and Machinery Laboratory, University of Stuttgart, Stuttgart 70569
  • 收稿日期:2012-01-11 出版日期:2012-07-01 发布日期:2012-07-01
  • 通讯作者: 吴志军(1972-),男,教授,博士生导师.研究方向:内燃机喷雾光学诊断技术,湍流燃烧.E-mail:zjwu@tongji.edu.cn E-mail:zjwu@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(51106113,51006075,51076118).

Multi-droplet stream creating system of hydrocarbon fuel based on ultrasonic atomization technology

HU Zong-jie1, XIAO Chun-jiang1, LI Zhi-long1, NILS Haneklaus1,2, GONG Hui-feng1, WU Zhi-jun1   

  1. 1. School of Automotive Studies, Tongji University, Shanghai 200092, China;
    2. Institute of Thermal Turbomachinery and Machinery Laboratory, University of Stuttgart, Stuttgart 70569, Germany
  • Received:2012-01-11 Online:2012-07-01 Published:2012-07-01

摘要: 基于超声雾化和载气输运技术,设计了速度、全局当量比可独立控制的碳氢燃料多液滴流制备系统。所生成的多液滴流能够更加真实地模拟内燃机喷雾外围液滴群的流动与混合状态。采用高亮度LED光源,并从90°角度拍摄多液滴流散射光,获得了不同空气流量(10、20、30、40 L/min)和正庚烷供给速度(150、200、250、300 mL/h)下的多液滴流高速摄影图片。发现多液滴流离开喷嘴管出口后可保持一段时间的单向稳定流动。空气卷吸和液滴挥发的共同作用导致稳定段长度随出口速度升高而先增大后减小。当喷嘴管出口液滴流速度低于5.2 m/s时,在稳定段之后将出现明显的空气卷吸漩涡,而且出口速度越低,漩涡越多且形状更加规则。离喷嘴管出口较远时,液滴扩散范围增大和燃料挥发可能导致采用散射光法已逐渐无法观测到多液滴流。

关键词: 动力机械工程, 超声雾化, 多液滴流, 正庚烷, 散射

Abstract: An experimental multi-droplet stream creating system was developed for the hydrocarbon fuel based on the ultrasonic atomization and the carrier-gas transport techniques. The speed and global equivalence ratio of the stream could be controlled independently to simulate really the flow and mixing conditions of the droplets at the spray fringes. The stream scattering light was photographed by a high-speed camera at 90? angle using a high intensity LED light source under different air flow rates(10,20,30 and 40 L/min) and different n-heptane supply rates(150,200,250 and 300 mL/h). The pictures showed that there was a stable flow near the nozzle exit and its length increases firstly and then decreases with air flow increasing because of the combined effect of air entrainment and droplet vaporization. When the stream speed at nozzle exit was lower than 5.2 m/s, appeared the obvious air entrainment eddies after the stable sector, and the lower the speed, the more eddy number and the more regular the eddy form. When the stream was far away from the nozzle exit, the multi-droplet stream might not be shot by its scattering at 90癮ngle because of the droplet diffusion and vaporization.

Key words: power machinery and engineering, ultrasonic atomization, multi-droplet stream, n-heptane, scattering

中图分类号: 

  • TK421
[1] 孙田,苏万华,郭红松.应用激光诱导荧光法研究超高压喷雾气液相浓度场分布特性[J].内燃机学报, 2007, 25(2):97-104. Sun Tian, Su Wan-hua, Guo Hong-song. Study of concentration distribution of liquid and vapor-phase of diesel spray injected at ultra-high injection pressure by planar laser induced exciplex fluorescence technique[J]. Transactions of CSICE, 2007, 25(2):97-104.
[2] 马晓,何旭,王建昕,等. 用激光诱导荧光法测量GDI发动机缸内混和气分布[J]. 内燃机工程, 2010, 31(4):1-5. Ma Xiao, He Xu, Wang Jian-xin, et al. In-cylinder mixture distribution measurement in a GDI engine using laser-induced fluorescence[J]. Chinese International Combustion Engine Engineering. 2010, 31(4):1-5.
[3] Abdullah Adam, Tomoaki Yatsufusa, Tomonori Gomi, et al. Analysis of droplets evaporation process of diesel spray at ignition delay period using dual nano-spark shadowgraph photography method//SAE Paper 2009-32-0017.
[4] Abdullah Adam, Naoki Inukai, Yoshiyuki Kidoguchi, et al. A study on droplets evaporation at diesel spray boundary during ignition delay period//SAE Paper, 2007-01-1893.
[5] Zigan L, Schmitz I, Flugel A, et al. Structure of evaporating single and multicomponent fuel sprays for 2nd generation gasoline direct injection[J]. Fuel, 2011,90(1):348-363.
[6] Jennifer Labs, Terry Parker. Two-dimensional droplet size and volume fraction distribution from the near-injector region of high-pressure diesel sprays[J]. Atomization and Sprays, 2006,16(7):843-855.
[7] George Strotos, Manolis Gavaises, Andreas Theodorakakos, et al. Numerical investigation of the evaporation of two-component droplets[J]. Fuel,2011,90 (4):1492-1507.
[8] Wong Shwin-Chung, Chang Jyh-Cheng. Evaporation of non-dilute and dilute monodispersed droplet clouds[J]. International Journal of Heat and Mass Transfer, 1992,35(10):4215-4228.
[9] 舒国才,杨长林,居荫诚,等. 柴油机喷雾蒸发过程的模拟计算与分析[J]. 燃烧科学与技术,1995,1(3):235-240. Shu Guo-cai, Yang Chang-lin, Jü Yin-cheng, et al. Simulation and analysis of evaporation process of diesel spray[J]. Journal of Combustion Science and Technology, 1995, 1(3):235-240.
[10] 周磊,解茂昭,贾明,等. 高压燃油喷雾雾化与蒸发过程的大涡模拟[J]. 内燃机学报,2010,28(3):241-246. Zhou Lei, Xie Mao-zhao, Jia Ming, et al. Large eddy simulation on atomization and evaporation of a high-pressure fuel spray[J]. Transactions of CSICE, 2010, 28(3):241-246.
[11] 张煜盛.柴油机喷雾两相流蒸发混合的数学模型研究[J]. 华中理工大学学报,1993, 21(3):156-160. Zhang Yu-sheng. A two-phase flow model for the prediction of the evaporation spray mixing process in diesel engines[J]. Journal of Huazhong University of Science & Technology, 1993,21(3):156-160.
[12] Ghosh Joydeep, Mukhopadhyay Achintya, Rao Gurram V, et al. Analysis of evaporation of dense cluster of bicomponent fuel droplets in a spray using a spherical cell model[J]. International Journal of Thermal Sciences, 2008,47(5):584-590.
[13] Lavieille P, Lemoine F, Lebouche M. Investigation on temperature of evaporating droplets in linear stream using two-color laser-induced fluorescence[J]. Combustion Science and Technology, 2002,174(4):117-142.
[14] Imaoka Randall T, Sirignano William A. Vaporization and combustion in three-dimensional droplet arrays//The 30th International Symposium on Combustion. Proceedings of the Combustion Institute (Part 2), Chicago:Combust Inst, 2005:1981-1989.
[15] Imaoka Randall T, Sirignano William A. Transient vaporization and burning in dense droplet arrays[J]. International Journal of Heat and Mass Transfer, 2005,48(21-22):4354-4366.
[16] Depredurand V, Castanet G, Lemoine F. Heat and mass transfer in evaporating droplets in interaction:influence of the fuel[J]. International Journal of Heat and Mass Transfer, 2010,53(17-18):3495-3502.
[17] Maqua C, Castanet G, Grisch F, et al. Monodisperse droplet heating and evaporation:Experimental study and modeling[J]. International Journal of Heat and Mass Transfer, 2008,51 (15-16):3932-3945.
[18] Kristyadi T, Depredurand V, Castanet G, et al. Monodisperse monocomponent fuel droplet heating and evaporation[J]. Fuel,2010,89(12):3995-4001.
[19] 袁江涛,杨立,孙嵘,等. 高温气流内雾滴运动与蒸发的理论分析[J]. 海军工程大学学报,2008, 20(2):5-8. Yuan Jiang-tao, Yang Li, Sun Rong, et al. Water droplet movement and its evaporation characteristics in high temperature gas flow[J]. Journal of Naval University of Engineering,2008, 20(2):5-8.
[20] 高原,李春望,廖卓,等. 非食用源生物柴油喷雾特性的试验研究[J]. 内燃机工程,2010, 31(1):32-37. Gao Yuan, Li Chun-wang, Liao Zhuo, et al. Experimental research on spray characteristics of unedible biodiesel[J]. Chinese International Combustion Engine Engineering,2010, 31(1):32-37.
[21] Nijdam J J, Starner S H, Langrish T A G. An experimental investigation of droplet evaporation and coalescence in a simple jet flow[J]. Experiments in Fluids, 2004,37(4):504-517.
[22] 梁泽钦,邱红喜,杨明丰,等. 超声雾化加湿系统研究与设计[J]. 武汉工业学院学报,2006, 25(3):24-26. Lian Ze-qin, Qiu Hong-xi, Yang Ming-feng, et al. Study and design on the ultrasonic atomization watering system[J]. Journal of Wuhan Polytechnic University,2006, 25(3):24-26.
[23] 王俐,连之伟,刘蔚巍. 结合超声雾化技术的液体除湿系统分析[J]. 中南大学学报:自然科学版, 2011,42(1):240-246. Wang Li, Lian Zhi-wei, Liu Wei-wei. Analysis of liquid-desiccant dehumidifying system combined with ultrasound atomization technology[J]. Journal of Central South University (Science and Technology), 2011,42(1):240-246.
[1] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[2] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[3] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[4] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[5] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[6] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[7] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[8] 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[9] 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
[10] 卫海桥, 裴自刚, 冯登全, 潘家营, 潘明章. 压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
[11] 李志军, 何丽, 姜瑞, 申博玺, 孔祥金, 刘世宇. 柴油机微粒捕集器灰分分布对其压降的影响评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766.
[12] 郭亮, 杨文昭, 王云开, 孙万臣, 程鹏, 李国良. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1767-1774.
[13] 虞浏, 刘忠长, 刘江唯, 杜宏飞, 许允. 直喷汽油机喷雾粒径特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1482-1488.
[14] 康利鸿, 田菁, 孙希龙, 张晔. 目标电磁散射特性对高分辨率星载SAR图像仿真影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1661-1668.
[15] 刘忠长, 腾鹏坤, 田径, 许允, 亓升林, 于凯波. 二级增压柴油机旁通阀调节特性[J]. 吉林大学学报(工学版), 2017, 47(3): 796-803.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!