吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1475-1482.doi: 10.13229/j.cnki.jdxbgxb20170847
秦静1, 徐鹤1,2, 裴毅强2, 左子农2, 卢莉莉1,2
QIN Jing1, XU He1,2, PEI Yi-qiang2, ZUO Zi-nong2, LU Li-li1,2
摘要: 利用定容燃烧弹试验系统,研究了不同初始温度、初始压力、甲醇裂解气添加比例和当量比对甲烷-甲醇裂解气预混层流燃烧速度和火焰的胞状不稳定性的影响,并在相同工况下进行了甲烷-一氧化碳混合燃料的试验,用以探究一氧化碳在甲醇裂解气中的作用。研究结果表明,甲烷-甲醇裂解气混合燃料的层流燃烧速度随着温度和甲醇裂解气添加比例的升高而增大,随压力的升高而降低;提高初始压力对热扩散不稳定性几乎没有影响,主要是由于火焰厚度减少使流体动力学不稳定性增强,从而导致火焰的胞状不稳定性增强。
中图分类号:
[1] 李伟峰,刘忠长,王忠恕,等. N2和CO2稀释对天然气发动机燃烧和NO Li Wei-feng, Liu Zhong-chang, Wang Zhong-shu, et al.Effects of N2 and CO2 dilution on the combustion and NO [2] Song H, Liu C, Li F, et al.A comparative study of using diesel and PODEn as pilot fuels for natural gas dual-fuel combustion[J]. Fuel, 2017, 188: 418-426. [3] Verma G, Prasad R K, Agarwal R A, et al.Experimental investigations of combustion, performance and emission characteristics of a hydrogen enriched natural gas fuelled prototype spark ignition engine[J]. Fuel, 2016, 178: 209-217. [4] Korb B, Kawauchi S, Wachtmeister G.Influence of hydrogen addition on the operating range, emissions and efficiency in lean burn natural gas engines at high specific loads[J]. Fuel, 2016, 164: 410-418. [5] Fan B W, Pan J F, Yang W M, et al.Effects of hydrogen blending mode on combustion process of a rotary engine fueled with natural gas/hydrogen blends[J]. Int J Hydrogen Energy, 2016, 41: 4039-4053. [6] 姚春德,徐元利,杨建军.甲醇裂解气对点燃式发动机性能影响研究[J].工程热物理学报, 2009, 30(2): 353-356. Yao Chun-de, Xu Yuan-li, Yang Jan-jun.Effects of dissociated methanol on performance of SI engine[J]. Journal of Engineering Thermophysics, 2009, 30(2): 353-356. [7] Hu Er-jiang,Huang Zuo-hua,He Jia-jia,et al.Measurements of laminar burning velocities and onset of cellular instabilities of methane-hydrogen-air flames at elevated pressures and temperatures[J]. Int J Hydrogen Energy, 2009, 34: 5574-5584. [8] Okafor E C, Hayakawa A,Nagano Y,et al.Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-ai[J]. Int J Hydrogen Energy, 2014, 39: 2409-2417. [9] Lapalme D, Seers P.Influence of CO2, CH4, and initial temperature on H2/CO laminar flame speed[J]. Int J Hydrogen Energy, 2014, 39: 3477-3486. [10] Liu Jie, Zhang Xin, Wang Tao, et al.Numerical study of the chemical, thermal and diffusion effects of H2 and CO addition on the laminar flame speeds of methane-air mixture[J]. Int J Hydrogen Energy, 2015, 40: 8475-8483. [11] Cheng T S, Chang Y C, Chao Y C, et al.An experimental and numerical study on characteristics of laminar premixed H2/CO/CH4/air flames[J]. Int J Hydrogen Energy, 2011, 36: 13207-13217. [12] Chen Z.On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames[J]. Combust Flame, 2011, 158: 291-300. [13] Muppala S P R, Nakahara M, Aluri N K, et al. Experimental and analytical investigation of the turbulent burning velocity of two-component fuel mixtures of hydrogen, methane and propane[J]. Int J Hydrogen Energy, 2009, 34: 9258-9265. [14] Bouvet N, Halter F, Chauveau C, et al.On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures[J]. Int J Hydrogen Energy, 2013, 38(14): 5949-5960. [15] Zhang Y, Shen W, Fan M, et al.Laminar flame speed studies of lean premixed H2 /CO/air flames[J]. Combust Flame, 2014, 161(10) :2492-2495. [16] Miao J, Leung C W, Huang Z.Laminar burning velocities, Markstein lengths, and flame thickness of liquefied petroleum gas with hydrogen enrichment[J]. Int J Hydrogen Energy, 2014, 39: 13020-13030. [17] Ai Yu-hua, Zhou Zhen, Chen Zheng, et al.Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures[J]. Fuel, 2014, 137: 339-345. [18] Law C K, Jomaas G, Bechtold J K.Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment[J]. Proc Combust Inst, 2005, 30(1): 159-167. [19] Mathur S, Tondon P K, Saxena S C.Thermal conductivity of binary, ternary and quaternary mixtures of rare gases[J]. Mol Phys, 1967, 12: 569-579. [20] Cai Xiao, Wang Jin-hua, Zhang Wei-jie, et al.Effects of oxygen enrichment on laminar burning velocities and Markstein lengths of CH4/O2/N2 flames at elevated pressures[J]. Fuel, 2016, 184: 466-473. [21] Hermanns R T E, Konnov A A, Bastiaans R J M, et al. Effects of temperature and composition on the laminar burning velocity of CH4+H2+O2+N2 flames[J]. Fuel, 2010, 89: 114-121. [22] 张烜,黄佐华,喻武.高温高压条件下甲醇裂解气-空气-稀释气层流火焰传播速度和马克斯坦长度研究[J].内燃机学报, 2010, 28(3): 214-220. Zhang Heng, Huang Zuo-hua, Yu Wu.Experimental study on laminar burning velocity and Markstein length of dissociated methanol-air-diluent mixtures at elevated temperatures and pressures[J]. Transactions of CSICE, 2010, 28(3): 214-220. |
[1] | 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761. |
[2] | 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443. |
[3] | 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474. |
[4] | 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062. |
[5] | 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734. |
[6] | 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759. |
[7] | 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479. |
[8] | 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165. |
[9] | 卫海桥, 裴自刚, 冯登全, 潘家营, 潘明章. 压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 166-173. |
[10] | 李志军, 何丽, 姜瑞, 申博玺, 孔祥金, 刘世宇. 柴油机微粒捕集器灰分分布对其压降的影响评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766. |
[11] | 郭亮, 杨文昭, 王云开, 孙万臣, 程鹏, 李国良. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1767-1774. |
[12] | 虞浏, 刘忠长, 刘江唯, 杜宏飞, 许允. 直喷汽油机喷雾粒径特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1482-1488. |
[13] | 刘忠长, 腾鹏坤, 田径, 许允, 亓升林, 于凯波. 二级增压柴油机旁通阀调节特性[J]. 吉林大学学报(工学版), 2017, 47(3): 796-803. |
[14] | 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810. |
[15] | 唐志刚, 张力, 尚会超, 吕晓惠, 陈曦, 郑仁蔚. 电热塞点火微型内燃机燃烧特性及残余废气对其的影响[J]. 吉林大学学报(工学版), 2017, 47(3): 811-818. |
|