吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (03): 734-739.doi: 10.7964/jdxbgxb201303029

• 论文 • 上一篇    下一篇

基于非下采样Contourlet域高斯混合模型的布匹瑕疵识别算法

崔玲玲, 卢朝阳, 李静, 李益红   

  1. 西安电子科技大学 综合业务网理论及关键技术国家重点实验室,西安 710071
  • 收稿日期:2012-06-24 出版日期:2013-05-01 发布日期:2013-05-01
  • 通讯作者: 卢朝阳(1963-),男,教授,博士生导师.研究方向:图像分析与图像理解,图像与视频编码,模式识别. E-mail:zhylu@xidian.edu.cn E-mail:zhylu@xidian.edu.cn
  • 作者简介:崔玲玲(1982-),女,博士研究生.研究方向:图像处理,模式识别.E-mail:llcuisx@gmail.com
  • 基金资助:

    国家自然科学基金项目(60872141);中央高校基本科研业务费专项资金项目 (K50510010007).

Fabric defect recognition algorithm based on Gaussian mixture model in nonsubsampled Contourlet domain

CUI Ling-ling, LU Zhao-yang, LI Jing, LI Yi-hong   

  1. State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071,China
  • Received:2012-06-24 Online:2013-05-01 Published:2013-05-01

摘要: 针对经典瑕疵检测算法不能很好地描述瑕疵特征和不易区分相似类瑕疵类别的问题,提出了一种非下采样Contourlet域高斯混合模型的布匹瑕疵识别算法.首先利用非下采样Contourlet变换(NSCT)得到图像的多方向、多尺度和平移不变表示,并通过代价函数挑选一个最优子带;由于子带瑕疵和非瑕疵区域系数差别较小,很难直接选取阈值,采用标准差法可以有效避免这个问题,获得比较准确的检测结果;然后计算瑕疵区域的统计特征得到特征向量;接着引入最小误分率函数,联合估计样本的高斯混合模型参数;最后采用贝叶斯分类器进行分类.在9类瑕疵上的实验结果表明,本文算法与几种经典算法相比得到更高的分类正确率.

关键词: 计算机应用, 瑕疵分类, 瑕疵检测, 非下采样Contourlet变换, 高斯混合模型

Abstract: Classical detection algorithms can not describe the defect characteristics in a better way, and it is difficult to classify the defects of similar classes. To solve these problems, an algorithm based on Gaussian Mixture Model (GMM) in nonsubsampled Contourlet domain for fabric defect recognition is proposed. First, the Nonsubsampled Contourlet Transform (NSCT) is used to obtain the representations in multi-directions, multi-scales and translation invariants, and an optimal sub-band is selected by the cost function. The difference of coefficients between defect and non-defect regions of the sub-band is smaller; therefore, the threshold is difficult to choose. The standard deviation method can effectively avoid this problem to get accurate results. After that the feature vectors are calculated by the statistical characteristics of the defect region. Then, the minimum misclassification function is used for joint estimation of the GMM parameters. Finally, the classification is completed by Bayesian classifier. Experiments on defects of nine categories show that the proposed algorithm can achieve better classification accuracy compared with the traditional algorithms.

Key words: computer application, defect classification, defect detection, nonsubsampled Contourlet transform (NSCT), Gaussian mixture model(GMM)

中图分类号: 

  • TP391
[1] Kumar A. Computer-vision-based fabric defect detection: a survey[J]. IEEE Trans on Industrial Electronics, 2008, 55 (1): 348-363.

[2] Chi-Ho C, Pang G K H. Fabric defect detection by Fourier analysis[J]. IEEE Trans on Industry Applications, 2000,36(5):1267-1276.

[3] Kumar A, Pang G K H. Defect detection in texture material using optimized filters[J]. IEEE Trans on Systems, Man, and Cybernetics-Part B:Cybernetics, 2002, 32 (5): 553-570.

[4] Mak K L, Peng P, Yiu K F C. Fabric defect detection using morphological filters[J]. Image and Vision Computing, 2009, 27 (10): 1585-1592.

[5] Kumar A, Pang G K H. Defect detection in textured materials using Gabor filters[J]. IEEE Trans on Industry Applications, 2002, 38 (2): 425-440.

[6] Han Yan-fang, Shi Peng-fei. An adaptive level-selecting wavelet transform for texture defect detection[J]. Image and Vision Computing, 2007, 25 (8): 1239-1248.

[7] Cunha A L, Zhou Jian-ping, Do M N. The nonsubsampled Contourlet transform:theory, design, and application[J]. IEEE Trans on Image Processing, 2006, 15 (10): 3089-3101.

[8] Yang Xue-zhi, Pang G K H, Yung N. Discriminative training approaches to fabric defect classification based on wavelet transform[J]. Pattern Recognition, 2004, 37 (5): 889-899.

[9] Choonjong K, Jose A Ventura, Karim T S. A neural network approach for defect identification and classification on leather fabric[J]. Journal of Intelligent Manufacturing, 2000, 11 (5): 485-499.

[10] Thomas D, Georg H, Hermann N. Object classification by fusing SVMs and Gaussian mixtures[J]. Pattern Recognition, 2010, 43 (7): 2476-2484.

[11] 李娟, 邵春福, 杨励雅. 基于混合高斯模型的行人检测方法[J]. 吉林大学学报:工学版, 2011, 41 (1): 41-45. Li Juan, Shao Chun-fu, Yang Li-ya. Pedestrian detection based on improved Gaussian mixture model[J].Journal of Jilin University(Engineering and Technology Edition), 2011,41(1):41-45.

[12] Dempster A, Laird N, Rubin D. Maximum likehood estimation from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society:Series B, 1977, 39 (1): 1-38.

[13] 崔玲玲, 卢朝阳, 李静, 等. 一种新的布匹瑕疵图像自动检测算法[J]. 西安电子科技大学学报, 2011, 38 (5): 65-72. Cui Ling-ling, Lu Zhao-yang, Li Jing, et al.Novel algorithm for automated detection of fabric defect images[J]. Journal of Xidian University, 2011, 38 (5): 65-72.

[14] Chiou Yih-Chih. Intelligent segmentation method for real-time defect inspection system[J]. Computers in Industry, 2010, 61 (7): 646-658.

[15] 马继涌, 高文. 一种基于最小误分率估计高斯混合模型参数的方法[J]. 计算机学报, 1999, 22 (8): 804-808. Ma Ji-yong, Gao Wen. An approach for estimating parameters in Gaussian mixture model based on minimum classification error rate[J].Chinese Journal of Computers, 1999, 22 (8): 804-808.

[16] 董宏辉, 孙智源, 葛大伟, 等. 基于高斯混合模型的铁路入侵物体目标识别方法[J]. 中国铁道科学, 2011, 32 (2): 131-135. Dong Hong-hui, Sun Zhi-yuan, Ge Da-wei,et al. Target recognition method of railway invasion based on Gaussian mixture model[J].China Railway Science, 2011, 32 (2): 131-135.

[17] Chang Chih-Jen, Lin Chih-Chung. LIBSVM:a library for support vector machines[J]. ACM Trans on Intelligent Systems and Technology, 2011, 2 (3):1-27.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!