吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 997-1003.doi: 10.7964/jdxbgxb201304025

• 论文 • 上一篇    下一篇

基于蚁群算法和支持向量机的节水灌溉技术优选

翟治芬1,2, 严昌荣1, 张建华3, 张燕卿1, 刘爽1   

  1. 1. 中国农业科学院 农业环境与可持续发展研究所,北京 100081;
    2. 农业部规划设计研究院,北京 100125;
    3. 中国农业科学院 农业信息研究所,北京 100081
  • 收稿日期:2012-04-18 出版日期:2013-07-01 发布日期:2013-07-01
  • 通讯作者: 严昌荣(1961-),男,研究员.研究方向:生态学.E-mail:yancr@ieda.org.cn E-mail:yancr@ieda.org.cn
  • 作者简介:翟治芬(1983-),女,博士后.研究方向:农业技术评估.E-mail:zhaizhifen0821@163.com
  • 基金资助:

    "十二五"国家科技支撑计划项目(2012BAD09B01);"973"国家重点基础研究发展计划项目(2012CB955904);世界银行项目(TF 092393-CN).

Optimization of water-saving irrigation technology based on ant colony algorithm and supporting vector machine

ZHAI Zhi-fen1,2, YAN Chang-rong1, ZHANG Jian-hua3, ZHANG Yan-qing1, LIU Shuang1   

  1. 1. Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China;
    2. Academy of Planning and Designing of the Ministry of Agriculture, Beijing 100125, China;
    3. Agricultural Information Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
  • Received:2012-04-18 Online:2013-07-01 Published:2013-07-01

摘要:

综合考虑了生产、生态、经济、气象、社会和土壤等因素,建立了节水灌溉技术优选指标体系,利用蚁群算法实现指标的筛选,并以支持向量机为分类器,建立了节水灌溉技术优选模型。以山西省的43个县为案例对该模型进行了试验,试验结果表明,在指标筛选方面,蚁群算法的应用有效减少了指标数量,从初始节水灌溉技术优选指标体系30个指标中,小麦优选出12个指标,玉米优选出16个指标,大豆和棉花优选出17个指标;在节水灌溉技术优选方面,本文模型针对小麦、玉米、大豆和棉花4种作物分别优选出了相应的节水灌溉技术,与当地的实际情况基本吻合。该模型可为决策人提供科学依据,对节水灌溉项目规划设计中选择适宜的节水灌溉技术有较大的现实意义。

关键词: 农业工程, 节水灌溉技术, 优选模型, 蚁群算法, 支持向量机

Abstract:

After considering the factors of production, ecology, economics, meteorology, society and soil, an index system for selecting water-saving irrigation technology was established. An optimization model of water-saving irrigation technology was developed based on Ant Colony Algorithm (ACA) and Support Vector Machine (SVM). The ACA was used to select indicators and SVM was used to build the classifier. Forty-three counties in Shanxi Province were taken as cases to test the model. Results show that ACA reduces the number of indicators. Form 30 indicators of the index system of water-saving irrigation technology, 12 indicators were selected out for wheat, 16 indicators for corn, 17 indicators for soybean and cotton. The model was used to optimize water-saving irrigation for wheat, corn, soybean and cotton fields respectively, and results were basically consistent with local conditions. The proposed model could provide scientific basis for decision-makers, and has great practical significance in selecting suitable water-saving irrigation technology for planning and designing irrigation projects.

Key words: agricultural engineering, water-saving irrigation technology, optimization model, ant colony optimization, support vector machine

中图分类号: 

  • S275

[1] 李小辉. 简论农业节水灌溉技术[J]. 赤峰学院学报:自然科学版,2009,25(1):114-115. Li Xiao-hui. Agricultural water-saving irrigation technology[J]. Journal of Chifeng University (Natural Science Edition), 2009, 25(1): 114-115.

[2] 孟夏. 节水灌溉适宜技术选择方法研究. 济南:山东农业大学,2008:41-58. Meng Xia. The disquisition of choosing the water-saving and irrigation technology in order. Ji'nan:Shandong Agricultural University, 2008:41-58.

[3] 贺延国,付强,邢贞相,等. 东北半干旱地区节水灌溉技术组装模式优选研究[J]. 灌溉排水学报,2006,25(2):81-84. He Yan-guo, Fu Qiang, Xing Zhen-xiang,et al. Optimizing the model of water-saving irrigation technique assembling in semi-arid irrigating district of northeast China[J]. Journal of Irrigation and Drainag, 2006,25(2):81-84.

[4] 陈欢,叶少有. 基于属性识别模型的节水灌溉方案优选[J]. 合肥工业大学学报:自然科学版,2009,32(12):1893-1895. Chen Huan, Ye Shao-you. Optimization of water saving irrigation modes based on attribute recognition model[J]. Journal of Hefei University of Technology(Science Edition),2009,32(12): 1893-1895.

[5] 卢玉邦,郭龙珠,郎景波. 综合评价方法在节水灌溉方式选择中的应用[J]. 农业工程学报,2006,22(2):33-36. Lu Yu-bang, Guo Long-zhu, Lang Jing-bo. Application of integrated appraisal method to water-saving irrigation pattern selection[J]. Transactions of the CSAE, 2006,22(2):33-36.

[6] 张庆华,白玉慧,倪红珍. 节水灌溉方式的优化选择[J]. 水利学报,2002(1):47-51. Zhang Qing-hua, Bai Yu-hui, Ni Hong-zheng. Optimal choice of water saving irrigation mode[J]. Journal of Hydraulic Engineering, 2002(1):47-51.

[7] 赵振霞,白清俊,唐涛. 基于模糊神经网络的节水灌溉适宜技术优选模型研究[J]. 水利科技与经济,2010,16(3):294-296. Zhao Zhen-xia, Bai Qing-jun, Tang Tao. Optimization model of water-saving irrigation techniques based on fuzzy neural network[J]. Water Conservancy Science and Technology and Economy, 2010,16(3):294-296.

[8] 高峰,雷声隆,庞鸿宾. 节水灌溉工程模糊神经网络综合评价模型研究[J]. 农业工程学报,2003,19(4):84-87. Gao Feng, Lei Sheng-long, Pang Hong-bin. Model of fuzzy nervous network integrated assessment of water-saving irrigation projects[J]. Transactions of the CSAE, 2003,19(4):84-87.

[9] Schuck Eric C, Marshall Frasier W, Webb Robert S, et al. Adoption of more technically efficient irrigation system as a drought response[J]. Water Resource Development, 2005(12): 651-662.

[10] Moreno Georgian, Sunding David L. Joint estimation of technology adoption and land allocation with implications for the design of conservation policy[J]. American Journal of Agricultural Economics,2005(11):1009-1019.

[11] Montazar A, Behbahani S M. Development of an optimised irrigation system selection model using analytical hierarchy process[J]. Biosystems Engineering, 2007, 98:155-165.

[12] 赵学华,李道亮,杨文柱,等. 基于改进蚁群算法的棉花异性纤维目标特征选择方法[J]. 农业机械学报,2011,42(4):168-173. Zhao Xue-hua, Li Dao-liang, Yang Wen-zhu, et al. Feature selection for cotton foreign fiber objects based on improved ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(4):168-173.

[13] 王书志,张建华,冯全. 基于纹理和颜色特征的甜瓜缺陷识别[J]. 农业机械学报,2011,42(3):175-179. Wang Shu-zhi, Zhang Jian-hua, Feng Quan. Defect detection of muskmelon based on texture features and color features[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(3):175-179.

[14] 张智韬,刘俊民,陈俊英,等. 基于RS、GIS和蚁群算法的多目标渠系配水优化[J]. 农业机械学报,2010,41(11):72-78. Zhang Zhi-tao, Liu Jun-min, Chen Jun-ying, et al. Water resources allocation of canal system based on multi-objective about RS, GIS and ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010,41(11):72-78.

[15] 张建华,冀荣华,祁力钧. 基于径向基支持向量机的棉花虫害识别[J]. 农业机械学报,2011,42(8):192-197. Zhang Jian-hua, Ji Rong-hua, Qi Li-jun. Recognition of pest damage for cotton leaf based on RBF-SVM algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(8):192-197.

[16] 粟晓玲,康绍忠. 石羊河流域多目标水资源配置模型及其应用[J]. 农业工程学报,2009,25(11):128-132. Su Xiao-ling, Kang Shao-zhong. Multi-objectives allocation model of water resources and its application in the Shiyang Riverbasin[J]. Transactions of the CSAE, 2009, 25(11): 128-132.

[1] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[2] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547.
[3] 贾洪雷, 王万鹏, 陈志, 庄健, 王文君, 刘慧力. 基于土壤坚实度的仿形弹性镇压辊镇压力实时测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1169-1175.
[4] 陈东辉, 吕建华, 龙刚, 张宇晨, 常志勇. 基于ADAMS的半悬挂式农业机组静侧翻稳定性[J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183.
[5] 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[6] 蔡振闹, 吕信恩, 陈慧灵. 基于反向细菌优化支持向量机的躯体化障碍预测模型[J]. 吉林大学学报(工学版), 2018, 48(3): 936-942.
[7] 王扬, 吕凤妍, 徐天月, 于建群. 大豆籽粒形状和尺寸分析及其建模[J]. 吉林大学学报(工学版), 2018, 48(2): 507-517.
[8] 车翔玖, 张孙旻. 基于异步更新策略的蚁群边缘提取算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1577-1582.
[9] 袁哲明, 张弘杨, 陈渊. 基于特征选择和支持向量机的HIV-1型蛋白酶剪切位点预测[J]. 吉林大学学报(工学版), 2017, 47(2): 639-646.
[10] 梁士利, 魏莹, 潘迪, 张玲, 许廷发, 王双维. 基于语谱图行投影的特定人二字汉语词汇识别[J]. 吉林大学学报(工学版), 2017, 47(1): 294-300.
[11] 贾洪雷, 郑嘉鑫, 袁洪方, 郭明卓, 王文君, 于路路. 大豆播种机双V型筑沟器设计与试验[J]. 吉林大学学报(工学版), 2017, 47(1): 323-331.
[12] 商强, 杨兆升, 张伟, 邴其春, 周熙阳. 基于奇异谱分析和CKF-LSSVM的短时交通流量预测[J]. 吉林大学学报(工学版), 2016, 46(6): 1792-1798.
[13] 赵云鹏, 于天来, 焦峪波, 宫亚峰, 宋刚. 异形桥梁损伤识别方法及参数影响分析[J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866.
[14] 周炳海, 徐佳惠. 基于支持向量机的多载量小车实时调度[J]. 吉林大学学报(工学版), 2016, 46(6): 2027-2033.
[15] 卢英, 王慧琴, 秦立科. 高大空间建筑火灾精确定位方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[3] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[4] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[5] 陈思国, 姜旭, 王健, 刘衍珩, 邓伟文, 邓钧忆. 车载自组网与通用移动通信系统混杂网络技术[J]. 吉林大学学报(工学版), 2013, 43(03): 706 -710 .
[6] 孟超, 孙知信, 刘三民. 基于云计算的病毒多执行路径[J]. 吉林大学学报(工学版), 2013, 43(03): 718 -726 .
[7] 仙树, 郑锦, 路兴, 张世鹏. 基于内容转发模型的P2P流量识别算法[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .
[8] 吕源治, 王世刚, 俞珏琼, 王小雨, 李雪松. 基于柱透镜光栅的虚模式下一维集成成像显示特性[J]. 吉林大学学报(工学版), 2013, 43(03): 753 -757 .
[9] 王丹, 李阳, 年桂君, 王珂. 非均质度量掩蔽函数在空域水印中的应用[J]. 吉林大学学报(工学版), 2013, 43(03): 771 -775 .
[10] 冯琳函, 钱志鸿, 尚克诚, 朱爽. 基于IEEE802.15.4标准的改进型隐藏节点冲突避免策略[J]. 吉林大学学报(工学版), 2013, 43(03): 776 -780 .