吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (05): 1433-1440.doi: 10.7964/jdxbgxb201305044

• 论文 • 上一篇    

飞行模拟器音效系统声音分析与合成技术

盛晓伟1, 郑淑涛2, 韩俊伟2   

  1. 1. 东华大学 机械工程学院, 上海 201620;
    2. 哈尔滨工业大学 机电工程学院, 哈尔滨 150001
  • 收稿日期:2012-04-05 出版日期:2013-09-01 发布日期:2013-09-01
  • 作者简介:盛晓伟(1982- ),男,讲师,博士.研究方向:系统仿真,声音和噪声信号处理.E-mail:shengxw@dhu.edu.cn
  • 基金资助:

    国家"985工程"基金项目(CDAZ98502211);教育部新世纪优秀人才支持计划项目(NCET-04-0325).

Technologies of sound analysis and synthesis for audio system of flight simulator

SHENG Xiao-wei1, ZHENG Shu-tao2, HAN Jun-wei2   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China;
    2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2012-04-05 Online:2013-09-01 Published:2013-09-01

摘要:

在简述音效系统开发方法的基础上,指出声源提取的必要性。提出使用短时傅里叶分析与合成技术以及使用线性预测分析与合成技术从飞机驾驶座舱的原始录音中提取声源的方法。详细讨论了两种方法的主要理论及提取过程,并分别使用实例阐述如何使用短时傅里叶分析与合成技术从原始录音中提取起落架放下时的声音以及使用线性预测分析与合成技术提取飞行中的空气动力噪声。通过实例以及实际开发表明,前一技术比较通用,适用于大部分声源的提取,而后一技术特别适用于噪声的提取。该两种技术还可推广到其他种类模拟器音效系统的开发中,因此具有非常大的工程应用价值。

关键词: 信息处理技术, 音效系统, 声源提取, 短时傅里叶分析与合成, 线性预测分析与合成

Abstract:

After briefing the development of audio system, this article explains the necessity of sound source extraction. New methods of extraction of sound sources from the original recordings of aircraft cockpit using short-time Fourier analysis/synthesis technology and linear prediction analysis/synthesis technology are proposed. The main theory and extracting steps of the two methods are discussed in detail. Two case studies are conducted to describe sound extraction of extending landing gear using short-time Fourier analysis/synthesis, and aerodynamic hiss extraction in flight using linear prediction analysis/synthesis from original recordings. The case studies and technology development reveal that short-time Fourier analysis/synthesis is more common and applicable to most sound sources, and linear prediction analysis/synthesis is more suitable to noise extraction. The two technologies can also be used for audio system developments of other vehicle simulators. Therefore, they possess important value in engineering application.

Key words: information processing technology, audio system, sound source extraction, short-time Fourier analysis/synthesis, linear prediction analysis/synthesis

中图分类号: 

  • TN911.7

[1] Vossner S, Braustingl R, Ploner-Bernard H, et al. A new functional framework for a sound system for realtime flight simulation[C]//Proceedings of the 8th International Conference on Digital Audio Effects (DAFx-05),Madrid, Spain, 2005.

[2] Ploner-Bernard H, Sontacchi A, Lichtenegger G, et al. Sound-system design for a professional full-flight simulator[C]//Proceedings of the 8th International Conference on Digital Audio Effects (DAFx-05). Madrid, Spain, 2005.

[3] Hamann S, Waldraff W, Finsterwalder R. Development of a simulator audio system based on COTS sound synthesis software[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. Providence, Rhode Island, USA, 2004.

[4] Sheng Xiao-wei, Zheng Shu-tao, Han Jun-wei, et al. Development of 3D sound simulation system for flight simulator[C]//Proceedings of 3rd International Conference on Computer Research and Development (ICCRD 2011), Shanghai, China, 2011.

[5] Gauduin B, Boussard P. High fidelity sound rendering for car driving simulators[C]//Proceedings of Driving Simulation Conference (DSC 2009),Monaco, 2009.

[6] 张镭. 飞行模拟器飞行仿真系统建模与软件实现[D]. 哈尔滨: 哈尔滨工业大学机电工程学院,2009. Zhang Lei. Flight simulation modeling and software development for flight simulator[D]. Harbin: School of Mechatronics Engineering, Harbin Institute of Technology, 2009.

[7] Serra X. A system for sound analysis/transformation/synthesis based on a deterministic plus stochastic decomposition[D]. Stanford: Stanford University, 1989.

[8] Allen J, Rabiner L. A unified approach to short-time Fourier analysis and Synthesis[J]. Proceedings of the IEEE, 1977, 65(11): 1558-1564.

[9] Vaseghi S. Advanced Digital Signal Processing and Noise Reduction[M]. 4th ed. West Sussex, UK: John Wiley & Sons Ltd, 2008.

[10] Arfib D, Keiler F, Zölzer U. Time-frequency Processing, in DAFX-Digital Audio Effect (Zölzer U ed.)[M]. West Sussex, UK: John Wiley & Sons Ltd, 2002.

[11] Makhoul J. Linear prediction: a tutorial review[J]. Proceedings of the IEEE, 1975, 63(4): 561-580.

[12] Makhoul J. Stable and efficient lattice methods for linear prediction[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1977, 25(5): 423-428.

[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!