吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (06): 1644-1649.doi: 10.7964/jdxbgxb201306034

• 论文 • 上一篇    下一篇

基于加权光流能量的异常行为检测

傅博1, 李文辉1,2, 陈博1, 王聪1,2, 王莹1,2   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012;
    2. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130012
  • 收稿日期:2012-06-26 出版日期:2013-11-01 发布日期:2013-11-01
  • 通讯作者: 李文辉(1961-),男,教授,博士生导师.研究方向:计算机图形学.E-mail:liwh@jlu.edu.cn E-mail:liwh@jlu.edu.cn
  • 作者简介:傅博(1983-),男,博士研究生.研究方向:图像处理与模式识别.E-mail:fubocloud@163.com
  • 基金资助:

    国家自然科学基金项目(60873147,41001302).

Abnormal behavior detection based on weighted energy of optical flow

FU Bo1, LI Wen-hui1,2, CHEN Bo1, WANG Cong1,2, WANG Ying1,2   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China
  • Received:2012-06-26 Online:2013-11-01 Published:2013-11-01

摘要:

为了减少光线突变对光流提取的干扰,实时、可靠地提取运动目标前景,采用双背景模型方法,即自适应的滑动平均背景更新算法融合HSV颜色空间背景模型提取前景。在运动目标前景的最小邻接矩形区域内,采用Lucas-Kanade方法计算光流信息,通过光流信息计算出运动目标的单位加权光流能量来判断是否发生异常行为。在室内外环境的实验结果表明:该方法能够稳定地检测人的异常行为,鲁棒性较高,计算复杂度较低,能够满足实时性要求。

关键词: 计算机应用, 异常行为检测, 双背景建模, 单位光流

Abstract:

A human abnormal behavior detecting approach was proposed based on optical flow features in the motion area. An improved dual background model, which includes an adaptive running average background model and a HSV background model, was developed to indicate the variation of background pixels in order to increase the robustness against illustration change and environmental disturbance. The model can reliably extract the motion area. Foreground was obtained from video sequences by background subtraction. The motion area was labeled as several regions of interest, and the optical features in each labeled region were obtained using Lucas-Kanade algorithm. Amplitude based weighted unit energy derived from the optical flow features was defined to measure the anomaly of human activity. Experiments were conducted on various videos indoor and outdoor, and the results were presented to verify the effectiveness of the proposed scheme.

Key words: computer application, abnormal behavior detection, dual background modeling, unit optical flow energy

中图分类号: 

  • TP391

[1] Datta A, Shah M, da Vitoria Lobo N. Person-on-person violence detection in video data[C]//16th International Conference on Pattern Recognition,Quebec, Canada,2002:433-438.

[2] Felzenszwalb P F, Huttenlocher D P. Pictorial structure for object recognition[J]. International Journal of Computer Vision, 2005, 61(1):55-79.

[3] Xiang Tao, Gong Shao-gang. Incremental and adaptive abnormal behavior detection[J]. Computer Vision and Image Understanding, 2008, 111(1):59-73.

[4] Fathi A, Mori G. Action recognition by learning mid-level motion features[DB/OL].[2012-01-17]. http:[C]//www.cs.sfu.ca/~mori/research/papers/fathi_actionrecognition_cvpr08.pdf.

[5] Andriluka M, Roth S, Schiele B. Pictorial structures revisited. People detection and atriculated pose estimation[C]//IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009:1014-1021.

[6] Ma G Y, Lin X Y. Typical sequences extraction and recognition[J]. Lecture Notes in Computer Science, 2004, 3058:60-71.

[7] Masoud O, Papanikolopoulos N. A method for human action recognition[J]. Image and Vision Computing, 2003, 21(8):729-743.

[8] Au C E, Skaff S, Clark J J. Anomaly detection for video surveillance application[C]//18th International Conference on Pattern Recognition, Hong Kong,China, 2006:888-891.

[9] Koller D, Weber J, Huang T, et al. Toward robust automatic traffic scene analysis in real-time video[C]//Proceedings of the 12th IAPR International Conference on Computer Vision & Image Processing,Australia,1994:126-131.

[10] 杜鉴豪,许力. 基于区域光流特征的异常行为检测[J]. 浙江大学学报:工学版, 2011, 45(7):1161-1166. Du Jian-hao, Xu Li. Abnormal behavior detection based on regional optical flow[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(7): 1161-1166.

[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!