吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 834-839.doi: 10.13229/j.cnki.jdxbgxb201403041

• 论文 • 上一篇    下一篇

改进的最小交叉Tsallis熵的小目标声呐图像分割

张金果1,郭海涛2,3,吴君鹏3,李依桐4   

  1. 1.东北电力大学 输变电技术学院,吉林 吉林 132012;
    2.内蒙古大学 电子信息工程学院,呼和浩特 010021;
    3.东北电力大学 电气工程学院,吉林 吉林 132012;
    4.北京邮电大学 计算机学院,北京100876
  • 收稿日期:2013-01-10 出版日期:2014-03-01 发布日期:2014-03-01
  • 通讯作者: 郭海涛(1965),男,教授.研究方向:图像处理,信号处理.E-mail:ghtao2005@sina.com E-mail:505227895@qq.com
  • 作者简介:张金果(1971),男,副教授.研究方向:计算机应用,控制理论与控制工程.E-mail:505227895@qq.com
  • 基金资助:
    国家自然科学基金项目(41076060);吉林省自然科学基金项目(20130101056JC);内蒙古大学高层次人才引进科研启动基金项目(135123).

Improved minimum symmetric Tsallis cross entropy for segmentation of a sonar image from a small underwater target

ZHANG Jin-guo1,GUO Hai-tao2,3,WU Jun-peng3,LI Yi-tong4   

  1. 1.Power Transmission and Transformation Technology College, Northeast Dianli University, Jilin 132012, China; 2.College of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China;
    3.Electrical Engineering College, Northeast Dianli University, Jilin 132012, China;
    4.Beijing University of Posts and Telecommunications, School of Computer Science, Beijing 100876, China
  • Received:2013-01-10 Online:2014-03-01 Published:2014-03-01

摘要: 利用一维属性直方图改进交叉Tsallis熵,在此基础上提出了一种基于一维属性直方图的对称最小交叉Tsallis熵水下小目标声呐图像分割方法。该方法的主要步骤是:①抑制水下小目标声呐图像的散斑噪声;②根据图像像素的灰度值和该像素邻域的灰度平均值的大小建立属性集,在属性集上建立与该属性集约束对应的一维属性直方图;③根据一维属性直方图的对称交叉最小Tsallis熵法确定灰度二值化阈值;④对二值化后的图像去除孤立区。实验结果表明:该方法适用于直方图为复杂非双峰形状的水下小目标声呐图像,而且与现有的属性直方图上的一维最大熵阈值化法比较,具有更强的抗噪能力。

关键词: 图像处理技术, 声呐图像, 图像分割, 属性直方图, 熵, 阈值

Abstract: A segmentation method on the sonar image of a small underwater target is proposed. In this method, the gray-level threshold for segmentation is acquired via the minimum symmetric Tsallis cross entropy that is based on one-dimensional bound histogram. In this method, first, the speckle noise of the sonar image is suppressed. Second, the bound set is constructed according to the restriction in the gray-level values of both pixels and their neighborhood averages, and the one-dimensional bound histogram corresponding to that bound set is established. Third, the gray-level threshold for segmentation is determined according to the minimum symmetric Tsallis cross entropy based on the one-dimensional bound histogram. Finally, the isolated areas in the threshold image are removed. Experimental results show that the proposed method is well adequate for the images with a nonideal bimodal histogram; it has better antinoise performance than the existing methods based on the entropy of the one-dimensional bound histogram.

Key words: image processing technology, sonar image, image segmentation, bound histogram, entropy, threshold

中图分类号: 

  • TN911.73
[1] Pun T. A new method for grey-level picture thresholding using the entropy of the histogram[J]. Signal Process, 1980, 2 (3): 223-237.
[2] Kapur J N, Sahoo P K, Wong A K C. A new method for gray-1evel picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics and Image Processing, 1985, 29(3): 273-285.
[3] Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer Vision, Graphics and Image Process, 1989, 47(1): 22-32.
[4] Li C H, Lee C K. Minimum cross entropy thresholding[J]. Pattern Recognition, 1993, 26(4): 617-625.
[5] Brink A D, Pendock N E. Minimum cross-entropy threshold selection[J]. Pattern Recognition, 1996, 29(1): 179-188.
[6] Pal N R. On minimum cross-entropy thresholding[J]. Pattern Recognition, 1996, 29(4): 575-580.
[7] 唐英干,邸秋艳,关新平,等.基于最小Tsallis交叉熵的阈值图像分割方法[J].仪器仪表学报,2008,29(9):1868-1872.
Tang Ying-gan, Di Qiu-yan, Guan Xin-ping, et al. Method for thresholding image segmentation based on minimum Tsallis-cross entropy[J]. Chinese Journal of Scientific Instrument, 2008, 29(9): 1868-1872.
[8] 吴一全,沈毅,刚铁,等.基于二维对称Tsallis交叉熵的小目标图像阈值分割[J].仪器仪表学报,2011,32(10):2161-2167.
Wu Yi-quan, Shen Yi, Gang Tie, et al. Thresholding for small target image based on 2-D symmetric Tsallis cross entropy[J]. Chinese Journal of Scientific Instrument, 2011, 32(10): 2161-2167.
[9] Portes de Albuquerque M, Esquef I A, Gesualdi Mello A R, et al. Image thresholding using Tsallis entropy[J]. Pattern Recognition Letters, 2004(25): 1059-1065.
[10] Sahoo P K, Arora G. Image thresholding using two-dimensional Tsallis-Havrda-Charvat entropy[J]. Pattern Recognition Letters, 2006, 27(6): 520-528.
[11] 郭海涛,孙大军,田坦.属性直方图及其在声纳图像模糊增强中的应用[J].电子与信息学报,2002,24(9):1287-1290.
Guo Hai-tao, Sun Da-jun, Tian Tan. Bound histogram and its application in the sonar image enhancement with fuzzy sets[J]. Journal of Electronics and Information Technology, 2002, 24(9): 1287-1290.
[12] 郭海涛,田坦,王连玉,等.利用二维属性直方图的最大熵的图像分割方法[J].光学学报,2006,26(4):506-509.
Guo Hai-tao, Tian Tan, Wang Lian-yu, et al. Image segmentation using the maximum entropy of the two-dimensional bound histogram[J]. Optica Sinica, 2006, 26(4): 506-509.
[13] 郭海涛,杨志民,田坦,等.海底小目标声呐图像一维最大熵分割的改进方法[J].海洋学报,2007,29(4):152-155.
Guo Hai-tao, Yang Zhi-min, Tian Tan, et al. Improved method based on the one-dimensional maximum entropy for segmentation of a sonar image from a small underwater target[J]. Acta Oceanologica Sinica, 2007, 29(4): 152-155.
[14] 郭海涛,周军.一种模糊加权均值滤波器在声呐图像平滑中的应用[J].海洋技术,2009,28(3):57-58.
Guo Hai-tao, Zhou Jun. Application of a filter with fuzzy authorized value in sonar image smoothing[J]. Ocean Technology, 2009, 28(3): 57-58.
[1] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[2] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[3] 高坤, 涂辉招, 时恒, 李振飞. 雾霾天气低能见度对不同跟驰状态驾驶行为的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1716-1727.
[4] 魏丽英, 崔裕枫, 魏家蓉. 基于局部最大熵换道规则的电动自行车流元胞自动机仿真模型[J]. 吉林大学学报(工学版), 2017, 47(5): 1436-1445.
[5] 肖明尧, 李雄飞, 张小利, 张刘. 基于多尺度的区域生长的图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597.
[6] 梁士利, 柴宗谦, 张玲, 吴颜生, 曹春雷. 基于偏X型细胞自动机的图像加密方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1653-1660.
[7] 左静, 帅斌, 黄文成. 改进距离熵权MULTIMOORA的铁路应急救援方案搜索[J]. 吉林大学学报(工学版), 2017, 47(4): 1068-1074.
[8] 诸葛晶昌, 吴军, 詹湘琳, 于之靖. 基于自适应小波去噪法的精密超声波测距方法[J]. 吉林大学学报(工学版), 2017, 47(4): 1301-1307.
[9] 刘仲民, 李战明, 李博皓, 胡文瑾. 基于稀疏矩阵的谱聚类图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[10] 赵夫群, 周明全, 耿国华. 基于GA-Otsu法的图像阈值分割及定量识别[J]. 吉林大学学报(工学版), 2017, 47(3): 959-964.
[11] 周保余, 赵宏伟, 肖杨, 臧雪柏. 基于局部熵的图像特征描述方法[J]. 吉林大学学报(工学版), 2017, 47(2): 601-608.
[12] 郑明, 卓慕瑰, 张树功, 周柚, 刘桂霞. 基于混合并行遗传算法和阈值限定法的基因调控网络构建[J]. 吉林大学学报(工学版), 2017, 47(2): 624-631.
[13] 刘海鸥, 张国鑫, 席军强, 张洪彦, 徐宜. 履带车辆传动系统动态载荷谱信号去噪[J]. 吉林大学学报(工学版), 2017, 47(1): 42-49.
[14] 赵宏伟, 王振, 杨文迪, 刘萍萍. 熵 选 择 多 重 二 进 制 编 码[J]. 吉林大学学报(工学版), 2017, 47(1): 218-226.
[15] 肖明尧, 李雄飞. 基于高斯分解的多尺度3D Otsu阈值分割算法[J]. 吉林大学学报(工学版), 2017, 47(1): 255-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!