吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 840-846.doi: 10.13229/j.cnki.jdxbgxb201403042

• 论文 • 上一篇    下一篇

用于指纹图像质量评价的新特征集

袁宝玺1,2,3,苏菲1,3,赵志诚1,3,蔡安妮1,3   

  1. 1.北京邮电大学 信息与通信工程学院,北京 100876;
    2.中国人民解放军95949部队,河北 沧州 061736;
    3.北京邮电大学 网络系统与网络文化北京市重点实验室,北京 100876
  • 收稿日期:2012-12-05 出版日期:2014-03-01 发布日期:2014-03-01
  • 通讯作者: 苏菲(1973),女,教授,博士生导师.研究方向:多媒体技术与信息处理.E-mail:sufei@bupt.edu.cn E-mail:13811255231@qq.com
  • 作者简介:袁宝玺(1978),男,工程师,博士.研究方向:多媒体技术与信息处理.E-mail:13811255231@qq.com
  • 基金资助:
    国家自然科学基金项目(90920001, 61101212);“863”国家高技术研究发展计划项目(2012AA012505);教育部归国留学人员科研启动基金项目.

Novel feature set for fingerprint image quality assessment

YUAN Bao-xi1,2,3,SU Fei1,3,ZHAO Zhi-Cheng1,3,CAI An-ni1,3   

  1. 1.School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2.The Chinese People′s Liberation Army 95949 Troops, Cangzhou 061736 China;
    3.Beijing Key Laboratory of Network System and Network Culture, Beijing University of Posts and Telecommunications, Beijing 100876,China
  • Received:2012-12-05 Online:2014-03-01 Published:2014-03-01

摘要: 以视觉注意机理为依据来选取指纹图像质量评价的特征,使特征集能够全面覆盖人对图像进行评价的各个方面。同时,提出了基于极坐标中心敏感特性的细节点可靠性评价方法和基于Otsu算法的灰度对比度评价方法。根据这些方法提取的特征能够更准确地描述图像的质量状态。试验结果表明:本文的特征集在BP神经网络和SVM两种分类器上都获得了很高的分类准确率。

关键词: 信息处理技术, 指纹质量评价, 视觉注意机制, 细节点可靠性评价, 灰度对比度评价

Abstract: Based on the mechanism of human visual attention, five features are chosen to simulate the process of subjective quality assessment of fingerprint images. Among these features, two of them are extracted by two proposed methods, a minutiae reliability assessment based on Polar Coordinates Centrum Sensitivity (PCCS) and a gray-scale image contrast based on Otsu algorithm. Experimental results show that this feature set on both Error Back Propagation (BP) Neural Network and Support Vector Machine (SVM) gives high classification accuracy.

Key words: information processing technology, fingerprint image quality assessment, mechanism of visual attention, minutiae reliability assessment, gray scale image contrast assessment

中图分类号: 

  • TN911.73
[1] Yang Zhi-guo, Li Ya-shuo, Yin Yi-long, et al. A template selection method based on quality for fingerprint matching[C]∥9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, 2012: 1382-1385.
[2] Lim E, Jiang X D, Yau W Y.Fingerprint quality and validity analysis[C]∥2002 International Conference on Image Processing, Rochester N Y,USA,2002: 469-472.
[3] Qi J, Abdurrachim D, Li D J, et al. A hybrid method for fingerprint image quality calculation[C]∥ Fourth IEEE Workshop on Automatic Identification Advanced Technologies, New York,USA,2005: 124-129.
[4] Liu Lian-hua,Tan Tai-zhe,Zhan Yin-wei. Based on SVM automatic measures of fingerprint image quality[C]∥Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, 2008:575-578.
[5] Yang Xiu-kun, Luo Yang. A classification method of fingerprint quality based on neural network[C]∥2011 International Conference on Multimedia Technology, Hangzhou, 2011:20-23.
[6] Zhan Xiao-si, Meng Xiang-xu, Yin Yi-long,et al. A method combined on multi-level factors for fingerprint image quality estimation[C]∥Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Ji′nan,China,2008:31-36.
[7] Wu J, Xie S J, Seo D H, et al. A new approach for classification of fingerprint image quality[C]∥7th IEEE International Conference on Cognitive Informatics, Stanford, CA, 2008:375-383.
[8] Bos L. The effect of task on visual attention and its application to image quality assessment metrics[D]. Holland: Faculty Electrical Engineering,Mathematics and Computer Science,Technical University of Delft, 2010.
[9] Comsweet T N. Visual Perception[M]. New York: Academic Press, 1970.
[10] Maltoni D, Maio D, Jain A K, et al. Handbook of Fingerprint Recognition[M]. 2nd Ed. New York: Springer-Verlag, 2009.
[11] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on System Man and Cybernetic, 1979, 9(1):62-66.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!