吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 959-964.doi: 10.13229/j.cnki.jdxbgxb201703037

• • 上一篇    下一篇

基于GA-Otsu法的图像阈值分割及定量识别

赵夫群1, 2, 周明全2, 3, 耿国华1   

  1. 1.西北大学 信息科学与技术学院,西安 710127;
    2.咸阳师范学院 教育科学学院,陕西 咸阳 712000;
    3.北京师范大学 信息科学与技术学院,北京 100875
  • 收稿日期:2016-01-05 出版日期:2017-05-20 发布日期:2017-05-20
  • 通讯作者: 周明全(1954-),男,教授,博士生导师.研究方向:图形图像处理,三维重建.E-mail:mqzhou@bnu.edu.cn
  • 作者简介:赵夫群(1982-),女,博士研究生.研究方向:图形图像处理.E-mail:fuqunzhao@126.com
  • 基金资助:
    国家自然科学基金项目(61373117,61305032)

Image threshold segmentation with GA-Otsu method and quantitative identification

ZHAO Fu-qun1, 2, ZHOU Ming-quan2, 3, GENG Guo-hua1   

  1. 1.College of Information Science and Technology, Northwest University, Xi'an 710127, China;
    2.College of Education Science, Xianyang Normal University, Xianyang 712000,China;
    3.College of Information Science and Technology, Beijing Normal University, Beijing 100875, China
  • Received:2016-01-05 Online:2017-05-20 Published:2017-05-20

摘要: 针对传统Otsu法在图像分割中存在的计算量大、效率低的问题,提出了一种基于GA-Otsu的热波图像分割方法。该方法充分发挥了遗传算法的全局寻优能力,快速地求解热波图像分割的最佳阈值,缩短了损伤的分割时间。通过与人工阈值法的分割结果进行对比,表明本文方法不仅保持了冲击损伤的基本形状,而且对冲击点位置的分割提取也较为准确。最后,通过对缺陷的定量识别验证了本文方法在热波检测图像分割中的有效性。

关键词: 计算机应用, 热波检测, 热波图像, 图像分割, 定量识别

Abstract: To overcome the shortcomings of large amount of calculation and low efficiency of the traditional Otsu method in image segmentation, a GA-Otsu segmentation method for thermal waving images is proposed. The method gives full play to the genetic algorithm with global searching ability. The optimal threshold of the thermal waving image segmentation can be attained quickly and the segmentation time of the injury is shortened. Compared with the artificial threshold segmentation method, experiment results show that the proposed method not only keeps the basic shape of impact damage, but also the position of impact point segmentation is accurate. Finally, the feasibility of the proposed method is proved by the thermal wave image threshold segmentation.

Key words: computer application, thermal waving inspection, thermal waving image, image segmentation, quantitative identification

中图分类号: 

  • TP391.41
[1] 李关华,曾智,沈京玲,等. 脉冲红外无损检测缺陷深度定量测量的数值模拟[J]. 红外与激光工程, 2013,42(4):875-879.
Li Guan-hua, Zeng Zhi, Shen Jing-ling, et al. Numerical simulation of defects depth quantitative measurement in pulsed infrared nondestructive testing[J]. Infrared and Laser Engineering,2013,42(4):875-879.
[2] 曾智,陶宁,冯立春,等. 基于对数二阶微分极小峰值时间的测厚方法研究[J]. 物理学报,2013,62(13): 138701.
Zeng Zhi, Tao Ning, Feng Li-chun, et al. Logarithmic minuspeak second derivative time based depth prediction[J]. Acta Physica Sinica,2013,62(13):138701.
[3] 姚凯. 基于小波清晰度计算的水下图像融合增强研究[J]. 电子测量技术, 2015, 38 (2): 64-67.
Yao Kai. Underwater multi-focus image enhancement based on wavelet[J]. Electronic Measurement Technology, 2015, 38 (2): 64-67.
[4] 赵满庆. 靶场光测图像序列的复合压缩方法[J].国外电子测量技术, 2013, 32 (7): 73-76.
Zhao Man-qing. Composite compression method for range optical measurement image sequence[J]. Foreign Electronic Measurement Technology, 2013, 32 (7): 73-76.
[5] 宗靖国,秦翰林,何国经,等. 非下采样小波变换红外光谱数据去噪[J]. 强激光与粒子束,2013,25(5):1105-1109.
Zong Jing-guo, Qin Han-lin, He Guo-jing, et al. Denoising method for infrared spectral data based on non-subsampled wavelet transform[J]. High Power Laser and Particle Beams,2013,25(5):1105-1109.
[6] 赵小川. MATLAB图像处理-能力提高与应用案例[M]. 北京:北京航空航天大学出版社,2014.
[7] Ostu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics,1979,9(1):62-66.
[8] Shepard S M. Thermography of composites[J]. Materials Evaluation,2007,65(7):690-696.
[9] Yang Zheng-wei, Zhang Wei, Tian Gan, et al. Debond detection of shell/insulation in SRM by thermal wave NDT[C]∥AIAA Paper,2010-934.
[10] 武翠琴,洪新华,王卫平, 等. 复合材料脱粘缺陷的红外热像无损检测[J]. 强激光与粒子束,2011,23(12):23-24.
Wu Cui-qin,Hong Xin-hua, Wang Wei-ping, et al. Non destructive testing of the infrared thermal image of the debonding defects of composite materials[J]. High Power Laser and Particle Beams,2011,23(12):23-24.
[11] 郭兴旺,董淑琴. 基于小波变换的红外热波无损检测融合算法[J]. 光学技术,2008,34(5):659-663.
Guo Xing-wang,Dong Shu-qin. An image fusion algorithm based on wavelet transform used in infrared themal wave nondestructive testing detection fusion algorithm[J]. Optical Technology, 2008,34(5):659-663.
[12] 刘涛,张炜,何付军, 等. 红外热波检测方法图像增强环节研究[J]. 红外与激光工程,2012,41(7):1922-1927.
Liu Tao,Zhang Wei, He Fu-jun. Infrared thermal wave nondestructive detection method for image enhancement link[J]. Infrared and Laser Engineering, 2012,41(7):1922-1927.
[13] 张炜,蔡发海,马宝民,等. 基于高频强调滤波的红外探伤图像增强力法[J]. 无损检测,2010,32(1):19-21.
Zhang Wei,Cai Fa-hai,Ma Bao-min, et al. Based on the high frequency emphasis filter of the infrared detection image enhancement method[J]. Nondestructive Testing,2010,32(1):19-21.
[14] 吴秋红, 吴谨, 朱磊, 等. 基于图论和FCM的图像分割算法[J]. 液晶与显示, 2016, 31(1): 112-116.
Wu Qiu-hong, Wu Jin, Zhu Lei, et al. Image segmentation algorithm based on graph theory and FCM[J]. Chinese Journal of Liquid Crystal and Displays, 2016, 31(1): 112-116.
[15] 张健, 李宏升. 基于图论阈值算法的图像分割研究[J]. 液晶与显示, 2014, 29(4):592-597.
Zhang Jian, Li Hong-sheng.Image mosaic research based on wavelet and rough set algorithm[J].Chinese Journal of Liquid Crystal and Displays, 2014, 29(4):592-597.
[16] Freeman H. On the edcoding of arbitrary geometric configurations[J]. IRE Transactions on Eletronic Computers,1961(2):260-268.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[7] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[8] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[9] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[10] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!