吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 991-997.doi: 10.13229/j.cnki.jdxbgxb201404014

• • 上一篇    下一篇

基于统一变桨距控制的立轴风力机启动性能

张立勋, 梁迎彬, 张松, 王康, 郭健   

  1. 哈尔滨工程大学 机电工程学院, 哈尔滨 150001
  • 收稿日期:2013-01-07 出版日期:2014-07-01 发布日期:2014-07-01
  • 作者简介:张立勋(1962-), 男, 教授, 博士.研究方向:机电一体化技术.E-mail:lixunzhang2002@yahoo.com.cn
  • 基金资助:
    黑龙江省自然科学基金项目(E201216); 中央高校基本科研业务费专项基金项目(HEUCF110707); 

Self-starting capacity of vertical axis wind turbine with collective pitch control

ZHANG Li-xun, LIANG Ying-bin, ZHANG Song, WANG Kang, GUO Jian   

  1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2013-01-07 Online:2014-07-01 Published:2014-07-01

摘要: 为提高立轴风力机的启动能力, 提出了适宜低尖速比运行的桨距角变化规律, 并设计了一种变桨执行机构以实现多组叶片的统一变桨距控制。从变桨执行机构、翼型选择、风轮结构和控制系统等方面介绍样机设计原理, 并进行了样机性能实验。结果表明:对称翼型厚度为15%时最佳, 而非对称翼型的最大厚度不超过10.4%;实验数据与理论值变化趋势一致, 理论值相比实验数据高出20%~30%;通过增加上盘面顺风区叶片迎风面积可以提高启动能力。

关键词: 动力机械工程, 立轴风力机, 统一变桨距控制, 启动性能

Abstract: In order to improve the self-starting capacity of Vertical Axis Wind Turbine (VAWT), the variation rule of blade pitch angle, which is suitable for the cases of low Tip Speed Ratio (TSR), is proposed; an actuator for collective pitch control is designed, which can change the blade pitch angle of multiple blades. A prototype is presented from the aspects of actuator of collective pitch control, airfoil selection, structure of wind wheel and control system. The performance tests of the prototype were carried out. The results show that the best thickness of the symmetrical airfoil is 15%, while the maximum thickness of asymmetrical airfoil is less than 10.4%. The theoretical data show similar variation trend but is 20%-30% higher than experimental data. The results also show that, to improve the self-starting toque, it is effective to increase the frontal area of the blade at downwind region of upstream.

Key words: power machinery and engineering, vertical axis wind turbine, collective pitch control, self-starting capacity

中图分类号: 

  • TK83
[1] Aslam Bhutta M M, Hayat N, Farooq A U, et al. Vertical axis wind turbine-a review of various configurations and design techniques[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 1926-1939.
[2] Eriksson S, Bernhoff H, Leijon M. Evaluation of different turbine concepts for wind power[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1419-1434.
[3] 申振华. 提高阻力型垂直轴风力机性能的方法和装置[P]. 中国: 201010133140.8, 2010-08-11.
[4] Chong W T, Poh S C, Fazlizan A, et al. Vertical axis wind turbine with OMNI -directional-guide-vane for urban high-rise buildings[J]. Journal of Central South University of Technology, 2012, 19(3): 727-732.
[5] Takao M, Maeda T, Kamada Y, et al. A straight-bladed vertical axis wind turbine with a directed guide vane row[J]. Journal of Fluid Science and Technology, 2007, 3(3): 379-386.
[6] 深圳先进技术研究院. 升阻力混合型垂直轴风力机[P]. 中国: 200920261028.5, 2010-10-06.
[7] 李岩, 田文强, 冯放, 等. 组合型垂直轴风力机结合角度对起动性的影响[J]. 农业机械学报, 2012, 43(12): 102-106. Li Yan, Tian Wen-qiang, Feng Fang, et al. Starting performance effects of combining angle on combined type VAWT[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 102-106.
[8] Islam M, Fartaj A, Carriveau R. Design analysis of a smaller-capacity straight-bladed VAWT with an asymmetric airfoil[J]. International Journal of Sustainable Energy, 2011, 30(3): 179-192.
[9] Islam M, Ting D S K, Fartaj A. Design of a special-purpose airfoil for smaller-capacity straight-bladed VAWT[J]. Wind Engineering, 2007, 31(6): 401-424.
[10] Kirke B K. Evaluation of self-starting vertical axis wind turbines for stand-alone applications[D]. Australia: Griffith University, 1998.
[11] 廖庚华, 胡钦超, 杨莹, 等. 基于典型鸟类翅膀特征的小型轴流风机叶片仿生设计与试验[J]. 吉林大学学报:工学版, 2012, 42(5): 1163-1167. Liao Geng-hua, Hu Qin-chao, Yang Ying, et al. Bionic design and experimental research on blade of small axial fan based on characteristics of wings of typical birds[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(5): 1163-1167.
[12] Baker J R. Features to aid or enable self starting of fixed pitch low solidity vertical axis wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 15(1): 369-380.
[13] Selig M S, Guglielmo J J, Broern A P, et al. Experiments on airfoils at low Reynolds numbers[C]∥The 34th Aerospace Science Meeting and Exhibit, Reno, NV: AIAA Paper, 1996.
[14] Dominy R, Lunt P, Bickerdyke A, et al. Self-starting capability of a Darrieus turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(1): 111-120.
[15] Islam M, Ting D S K, Fartaj A. Desirable airfoil features for smaller-capacity straight-bladed VAWT[J]. Wind Engineering, 2007, 31(3): 165-196.
[16] Pawsey N C K. Development and evaluation of passive variable-pitch vertical axis wind turbines[D]. Australia: University of New South Wales, 2002.
[17] 赵振宙, 郑源, 宋晨光, 等. 升阻混合风轮的性能规律[J]. 排灌机械工程学报, 2011, 29(6): 508-513. Zhao Zhen-zhou, Zheng Yuan, Song Chen-guang, et al. Performance of lift-drag combined wind turbine rotor[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(6): 508-513.
[18] 邢作霞, 陈雷, 孙宏利, 等. 独立变桨距控制策略研究[J]. 中国电机工程学报, 2011, 31(26): 131-138. Xing Zuo-xia, Chen Lei, Sun Hong-li, et al. Strategies study of individual variable pitch control[J]. Proceedings of the CSEE, 2011, 31(26): 131-138.
[19] Cooper P, Kennedy O C. Development and analysis of a novel vertical axis wind turbine[C]∥The 42nd Annual Conference of the Australian and New Zealand Solar Energy Society, Perth, Australia, 2004.
[20] Templin R. Aerodynamic performance theory for the NRC vertical-axis wind turbine[R]. Ottawa, Canada: National Research Council of Canada Technical Report LTR-LA-160, 1974.
[1] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[2] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[3] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[4] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[5] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[6] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[7] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[8] 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[9] 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
[10] 卫海桥, 裴自刚, 冯登全, 潘家营, 潘明章. 压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
[11] 李志军, 何丽, 姜瑞, 申博玺, 孔祥金, 刘世宇. 柴油机微粒捕集器灰分分布对其压降的影响评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766.
[12] 郭亮, 杨文昭, 王云开, 孙万臣, 程鹏, 李国良. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1767-1774.
[13] 虞浏, 刘忠长, 刘江唯, 杜宏飞, 许允. 直喷汽油机喷雾粒径特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1482-1488.
[14] 刘忠长, 腾鹏坤, 田径, 许允, 亓升林, 于凯波. 二级增压柴油机旁通阀调节特性[J]. 吉林大学学报(工学版), 2017, 47(3): 796-803.
[15] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!