吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1429-1434.doi: 10.7964/jdxbgxb201405033

• • 上一篇    下一篇

一种微阵列数据降维新方法

王刚1, 2, 3, 张禹瑄4, 李颖1, 2, 陈慧灵5, 胡玮通6, 秦磊1, 2   

  1. 1.吉林大学 计算机科学与技术学院,长春 130012;
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春 130012;
    3.吉林大学 地球探测科学与技术学院,长春 130026;
    4.吉林大学 通信工程学院,长春 130012;
    5.温州大学 物理与电子信息工程学院,浙江 温州 325035;
    6.空军航空大学 基础部实验中心,长春 130022
  • 收稿日期:2013-07-05 出版日期:2014-09-01 发布日期:2014-09-01
  • 通讯作者: 李颖(1965),女,教授,博士.研究方向:模式识别.E-mail:liying.jlu.cs@gmail.com
  • 作者简介:王刚(1981), 男, 讲师, 博士.研究方向:机器学习.E-mail:wanggang.jlu@gmail.com
  • 基金资助:
    国土资源部重大专项项目(201311192); 中国博士后基金项目(2013M530981); 国家自然科学基金项目(61303113).

Novel method for microarray data dimension reduction

WANG Gang1,2,3, ZHANG Yu-xuan4, LI Ying1,2, CHEN Hui-ling5, HU Wei-tong6, QIN Lei1,2   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China;
    3.College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    4.College of Communication Engineering, Jilin University, Changchun 130012, China;
    5.College of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, China;
    6.Basic Course Department, Air Force Aviation University, Changchun 130022, China
  • Received:2013-07-05 Online:2014-09-01 Published:2014-09-01

摘要: 提出一种二阶段并行基因选择方法(TPM),可以获得最优特征子集。针对以往算法易于陷入局部极值的不足,提出了一种模糊多种群粒子群(FMP),可以有效地扩展搜索空间。通过在leukemia、colon、breast cancer、lung carcinoma、brain cancer五个数据集上的测试,验证了本文方法不仅可以获得更优特征子集和更高的分类精度,而且可以选择尺寸更小的特征子集。本文的研究成果可为基因表达领域提供一种新的思路。

关键词: 计算机应用, 基因选择, 特征选择, 微阵列, 粒子群

Abstract: A two stage parallel gene selection method (TPM) for obtaining the optimal feature subset is proposed. A fuzzy multi-swarm particle optimization (FMP) is also proposed to extend the searching spaces, to overcome the problem of traditional algorithm to be locked to local optimum. The performance of the TMP is evaluated on five microarray datasets (leukemia dataset, colon dataset, breast cancer dataset, lung carcinoma dataset and brain cancer dataset). The comparison results show that the proposed method not only gets better quality of feature subset and higher classification accuracy, but also generates smaller feature subsets. The results of this study could provide a new idea to the field of gene expression.

Key words: computer application, gene selection, feature selection, microarray, particle swarm optimization

中图分类号: 

  • TP301.6
[1] 刘元宁,王刚, 赵正东, 等. 基于自适应多种群遗传算法的特征选择[J].吉林大学学报:工学版, 2011, 41(6): 1690-1693.Liu Yuan-ning, Wang Gang, Zhao Zheng-dong, et al. Feature selection based on adaptive multi-population genetic algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(6): 1690-1693.
[2] Liu Y, Wang G, Chen H. An improved particle swarm optimization for feature selection[J].Journal of Bionic Engineering, 2011, 8(2): 191-200.
[3] Wang G, Zhang W, Ning Q, et al. A novel framework based on ACO and PSO for RNA secondary structure prediction[J]. Mathematical Problems in Engineering, 2013, 3(2): 1024-1031.
[4] Yildiz Q, Tez M, Bilge H S, et al. Gene selection for breast cancer classification based on data fusion and genetic algorithm[J].Journal of the Faculty of Engineering and Architecture of Gazi University, 2012,27(3):659-668.
[5] Mohamad M S, Omatu S, Deris S, et al. A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data[J].IEEE Transactions on Information Technology in Biomedicine, 2011, 15(6):813-822.
[6] Chuang L Y, Yang C H, Li J C. A hybrid BPSO-CGA approach for gene selection and classification of microarray data[J]. Journal of Computational Biology,2012,19(1): 68-82.
[7] Garcia-Nieto J, Alba E. Parallel multi-swarm optimizer for gene selection in DNA microarrays[J].Applied Intelligence,2012,37(2):255-266.
[8] Abdi M J, Hosseini S M, Rezghi M. A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification[J].Computational and Mathematical Methods in Medicine,2012, 12(5): 78-85.
[9] Kabir M M, Shahjahan M, Murase K. A new hybrid ant colony optimization algorithm for feature selection[J]. Expert Systems with Applications, 2012,39(3):3747-3763.
[10] Li Y, Wang G. An ant colony optimization based dimension reduction method for high-dimensional datasets[J]. Journal of Bionic Engineering, 2013, 10(2):231-241.
[11] 王刚, 刘元宁, 陈慧灵, 等. 粗糙集与支持向量机在肝炎诊断中的应用[J].吉林大学学报:工学版, 2011, 41(1):160-164.Wang Gang, Liu Yuan-ning, Chen Hui-ling, et al. Application of rough set and support vector machines in hepatitis diagnosis[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(1):160-164.
[12] 王刚, 刘元宁, 张晓旭, 等. 基于模糊自适应粒子群的垃圾邮件过滤方法[J].吉林大学学报:工学版, 2011, 41 (3): 716-720. Wang Gang, Liu Yuan-ning, Zhang Xiao-xu, et al. Novel spam filtering method based on fuzzy adaptive particle swarm optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41 (3): 716-720.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!