吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 814-819.doi: 10.13229/j.cnki.jdxbgxb201503019

• • 上一篇    下一篇

气动悬浮非接触输送装置的输送性能

刘建芳, 陈洪霞, 刘国君   

  1. 吉林大学 机械科学与工程学院,长春 130022
  • 收稿日期:2014-03-13 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 刘国君(1972-),男,副教授,硕士生导师.研究方向:压电驱动与控制,微流控器件.
  • 作者简介:刘建芳(1975-)男,教授,博士生导师.研究方向:微小机械及精密机械系统,智能机械,悬浮及控制.
  • 基金资助:
    国家自然科学基金项目(51475198,51375207)

Transport performance of non-contact transformation using aerostatic suspension

LIU Jian-fang, CHEN Hong-xia, LIU Guo-jun   

  1. College of Mechanical Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2014-03-13 Online:2015-05-01 Published:2015-05-01

摘要: 为了实现重载物体的非接触输送,设计了一种气动悬浮式非接触自动输送装置。研究了静压型气浮支承的工作原理和非接触输送机理,建立了悬浮结构和输送结构的物理模型,并加工了试验样机。同时搭建了步进电机点动控制系统,利用WPLSoft软件设计了PLC程序,进行了输送气压和喷嘴旋转角度对输送速度影响的试验研究。试验结果表明:当悬浮气压和输送气压均为0.2 MPa,喷嘴旋转角度为32.4°时,质量为1 kg的物体的运输速度为62.5 mm/s。

关键词: 流体传动与控制, 静压型气浮支承, 非接触输送, 步进电机, PLC控制

Abstract: In order to achieve non-contact transportation of heavy load objects, a new non-contact automatic transportation device using aerostatic suspension is proposed. The working principle of the aerostatic bearing and non-contact transportation is studied, and the relative force analysis is carried out. Then, the physical model of the suspension structure and transport structure is established and the experimental prototype is manufactured. The electronic control system of stepping motor is set up and PLC program is designed using WPLSoft software. In addition, the influence of transport pressure and nozzle rotation angle on the transport velocity of heavy load objects is investigated by experiments. The experiment results show that the capability of the aerostatic bearing is enhanced sharply, and the heavy load objects can be transported steadily. When both suspension pressure and transport pressure are 0.2 MPa and the nozzle rotation angle is 32.4°, an object with mass of 1 kg can be transported steadily at velocity of 62.5 mm/s.

Key words: fluid power transmission and control, aerostatic bearing, non-contact transportation, stepping motor, PLC controlling

中图分类号: 

  • TH165
[1] Paradis P F, Iskikawa T, Yoda S. Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace[J]. International Journal of Thermophysics,2002,23(3):825-842.
[2] Kang B J, Hung L S, Kuo S K. 2 DOF control for the motion of a magnetic suspension positioning stage driven by inverter-fed liner motor[J]. Mechatronics, 2003,13(7):677-696.
[3] 刘家郡,江海,尤辉,等. 超声悬浮-气浮混合式悬浮的承载力特性研究[J]. 西安交通大学学报,2003,47(5):56-60.
Liu Jia-jun, Jiang Hai, You Hui, et al. Bearing capability of ultrasonic levitation and pneumatic suspension[J]. Journal of Xi'an Jiaotong University, 2003,47(5):56-60.
[4] Koyama D,Nakamura K. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector[J]. Ultrasonics, Ferroelectrics and Frequency Control, 2010,57(5):1152-1159.
[5] Hennet L, Cristiglio V, Kozaily J. Aerodynamic levitation and laser heating: application at synchrotron and neutron sources[J]. The European Physical Journal, 2011,196(1):151-165.
[6] 李锦. 近场超声非接触支撑与传输系统的理论与实验研究[D]. 上海:上海交通大学机械与动力工程学院,2012.
Li Jin. Theoretical and experimental study of near field acoustic levitation support and transport sysytem[D]. Shanghai:College of Mechanical and Power Engineering, Shanghai Jiaotong University, 2012.
[7] 江海. 基于超声悬浮-气浮的混合悬浮驱动机理及实验初步研究[D]. 长春:吉林大学机械科学与工程学院,2013.
Jiang Hai. Driving mechanism and experiment research of hybrid suspension based on near-field acoustic levitation and pneumatic suspension[D]. Changchun: College of Mechanical Science and Engineering, Jilin University, 2013.
[8] 董学文,陈白宁. 基于PLC步进电机位置闭环控制研发与应用[J]. 设计与分析,2011(30):142-143.
Dong Xue-wen, Chen Bai-ning. Develop and application of location looped control of stepping motor by PLC[J]. Design and Analyze, 2011(30):142-143.
[9] 叶燚玺. 超精密运动平台中气浮支承振动特性的研究[D]. 武汉:华中科技大学机械科学与工程学院,2010.
Ye Yi-xi. Vibration characteristics of aerostatic bearing in ultra-precision motion stage[D]. Wuhan: College of Mechanical Science and Engineering, Huazhong University of Science and Technology, 2010.
[1] 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499.
[2] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[3] 刘国君, 马祥, 杨志刚, 王聪慧, 吴越, 王腾飞. 集成式三相流脉动微混合芯片[J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[4] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[5] 王佳怡, 刘昕晖, 王昕, 齐海波, 孙晓宇, 王丽. 数字二次元件变量冲击机理及其抑制[J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[6] 闻德生, 王京, 高俊峰, 周聪. 双定子单作用叶片泵闭死容腔的压力特性[J]. 吉林大学学报(工学版), 2017, 47(4): 1094-1101.
[7] 刘国君, 张炎炎, 杨旭豪, 李新波, 刘建芳, 杨志刚. 声表面波技术在金纳米粒子可控制备中的应用[J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108.
[8] 王丽, 刘昕晖, 王昕, 陈晋市, 梁燚杰. 装载机数字液压传动系统换挡策略[J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[9] 李慎龙, 刘树成, 邢庆坤, 张静, 赖宇阳. 基于LBM-LES模拟的离合器摩擦副流致运动效应[J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[10] 张敏, 李松晶, 蔡申. 基于无阀压电微泵控制的微流控液体变色眼镜[J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[11] 闻德生, 陈帆, 甄新帅, 周聪, 王京, 商旭东. 双定子泵和马达在压力控制回路中的应用[J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[12] 顾守东, 刘建芳, 杨志刚, 焦晓阳, 江海, 路崧. 压电式锡膏喷射阀特性[J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[13] 张健, 姜继海, 李艳杰. 锥型节流阀流量特性[J]. 吉林大学学报(工学版), 2016, 46(6): 1900-1905.
[14] 吴维, 狄崇峰, 胡纪滨, 苑士华. 基于液压变压器的自适应换向驱动系统[J]. 吉林大学学报(工学版), 2016, 46(6): 1906-1911.
[15] 杨华勇, 王双, 张斌, 洪昊岑, 钟麒. 数字液压阀及其阀控系统发展和展望[J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!