吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 837-843.doi: 10.13229/j.cnki.jdxbgxb201503022

• • 上一篇    下一篇

基于下肢动力学检测分析的站起康复训练机器人控制

刘坤1, 赵建琛1, 曹恩国2, 韩宣1   

  1. 1.吉林大学 机械科学与工程学院,长春130022;
    2.江南大学 设计学院,江苏 无锡 214122
  • 收稿日期:2013-12-20 出版日期:2015-05-01 发布日期:2015-05-01
  • 作者简介:刘坤(1981-),男,副教授,博士.研究方向:下肢智能康复训练设备.
  • 基金资助:
    国家自然科学青年基金项目(81101138); 博士后科学基金面上项目(2011M500601); 长春市社会发展科技计划项目(2012111-12SF39)

Control methods for standing-up rehabilitation robot based on estimation and analysis of lower limb kinetics

LIU Kun1, ZHAO Jian-chen1, CAO En-guo2, HAN Xuan1   

  1. 1.College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2.Jiangnan University, School of Design,Wuxi 214122, China
  • Received:2013-12-20 Online:2015-05-01 Published:2015-05-01

摘要: 提出了人体站起轨迹控制方法(TCM)和阻尼控制方法(ICM)。采用这两种控制方法可以实现对机器人系统的控制,使患者能安全、有效地进行下肢站起运动康复训练。在患者站起过程中,下肢各肢段旋转角、身体运动轨迹、地面反力(GRF)、压力中心(COP)和绳索张力等参数可由康复机器人系统中的相应传感器实时检测得出,并通过实时运算得出髋、膝、踝各关节力矩,用于反馈控制。试验结果表明,该方法可以保证患者实现安全、舒适、有效的站起训练,适用于站起康复训练机器人控制系统。

关键词: 机械设计, 站起康复训练, 阻尼控制方法, 轨迹控制方法, 下肢动力学分析

Abstract: A Trajectory Control Method (TCM) and an Impedance Control Method (ICM) are presented. The methods are used to control the robot system so that patients can safely and effectively conduct lower extremity rehabilitation training for standing-up process. During standing-up process, the body segment rotational angles, movement trajectories, Ground Reaction Forces (GRF), Centre of Pressure (CoP) and rope tensile forces are measured by the robot sensor system; the joint moments of ankle, knee and hip are calculated in real-time control program for feed-back-control. Experiment results show that the methods are suitable for standing-up rehabilitation training robot control system, and ensure safe, comfortable and effective rehabilitation training of the lower limbs.

Key words: mechine design, stand up rehabilitation training, trajectory control method(TCM), impedance control method(ICM), lower limb kinetics analysis

中图分类号: 

  • TP212.9
[1] Hornby T G, Zemon D H, Campbell D. Robotic-assisted, bodyweight-supported treadmill training inindividuals following motor in complete spinal cord injury[J]. Phys Ther, 2005,85(1):52-66.
[2] Hirata R,Sakaki T,Okada S, et al. Bio-Resposive Motion System (Rehabilitation System for Stroke Patients)[C]∥Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems EPFL, Lausanne,Switzerland, 2002:1344-1348.
[3] Yoon J,Novandy B,Yoon C H,et al. A 6-DOF gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains[J]. IEEE-ASME Transactions on Mechatronics,2010,15(2):201-215.
[4] Ferris D P,Sawicki G S,Domingo A. Powered lower limb orthoses for gait rehabilitation[J]. Top Spinal Cord Inj Rehabil,2005,11(2):34-49.
[5] Aoyagi D,Ichinose W E,Harkema S J,et al. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(3):387-400.
[6] Veneman J F,Kruidhof R,Hekman E E G,et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(3):379-386.
[7] Banala S K,Agrawal S K,Fattah A,et al. Gravity-balancing leg orthosis and its performance evaluation[J]. IEEE Transactions on Robotics,2006,22(6):1228-1239.
[8] Jaime R P,Matjaci Z,Hunt K J. Paraplegic standing supported by FES-controlled ankle stiffness[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2002,10(4):239-248.
[9] Mori Y,Okada J,Takayama K. Development of a standing style transfer system ‘ABLE’ for disabled lower limbs[J]. IEEE-ASME Transactions on Mechatronics, 2006,11(4):372-380.
[10] Bando N,Horibe S,Yamada H, et al. Solid body link model for the motion of standing up and capability of evaluation of joint moment[R]. Research Report of Life Technology Research Centre of Gifu Ken,2006(9):30-37.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[4] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[5] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[6] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[7] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[8] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[9] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[10] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[11] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[12] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[13] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[14] 陈忠敏, 侯力, 段阳, 张祺, 杨忠学, 蒋易强. 新型摆线针轮行星减速器传动系统的振动特性[J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
[15] 刘念, 徐涛, 徐天爽, 胡贤磊, 刘维海. 基于差厚技术的汽车仪表板管梁轻量化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 199-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!