吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 844-850.doi: 10.13229/j.cnki.jdxbgxb201503023

• • 上一篇    下一篇

康复机器人辅助站立人体质心动量测试及模拟

王志强1, 姜洪源1   

  1. 1.哈尔滨工业大学 机电工程学院,哈尔滨 150001;
    2.卢布尔雅那大学 电气学院,卢布尔雅那 1000,斯洛文尼亚
  • 收稿日期:2013-10-14 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 姜洪源(1960-),男,教授,博士生导师.研究方向:金属橡胶,微流控以及硬盘驱动器. E-mail:wangzhiqiang299@sina.com
  • 作者简介:王志强(1983-),男,博士研究生.研究方向:康复辅助器械,人机工程.
  • 基金资助:
    国家自然科学基金项目(50575053); 中国与斯洛文尼亚政府间科技项目(9-7)

Experiment and simulation on body center-of-mass momentum during sit-to-stand assisted by rehabilitation robot

WANG Zhi-qiang1, JIANG Hong-yuan1, ROMAN Kamnik2   

  1. 1. School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001,China;
    2.Laboratory of Robotics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia
  • Received:2013-10-14 Online:2015-05-01 Published:2015-05-01

摘要: 为了分析康复机器人辅助站立过程中人体质心动量的变化规律,使用所建模型对机器人辅助站立过程中人体质心轨迹、线性动量和角动量进行了测试。依据拉格朗日方程推导人体质心动量数学模型,并利用辅助平行四边形法确定质心位置。分别对慢速、常速和快速辅助站立时,人体质心轨迹、线性动量及角动量进行了测试,利用所推导数学模型,在Matlab/Simulink中建模并对人体质心动量和轨迹进行了模拟。结果表明:当采用不同辅助站立速度时,康复机器人仍能保持人体平稳地完成站立。通过分析质心水平和垂直动量得出:水平动量是站立稳定性的决定因素,而垂直动量是完成竖直站立的决定因素。模拟值与测试值重合度较好,表明所建模型可实现对质心位置和动量的有效预测,为分析辅助站立的稳定性和康复训练奠定了基础。

关键词: 机械设计, 康复机器人, 辅助站立, 人体质心, 线性与角动量

Abstract: To analyze the change rule of body center-of-mass momentum during sit-to-stand motion assisted by rehabilitation robot, the trajectory and center-of-mass momentum of human body are measured. A mathematical model of the body center-of-mass momentum is derived based on Lagrangian equation. The position of mass center during standing up is obtained by auxiliary parallelogram method. The trajectory and momentum are measured during standing up with low, normal and fast assisting velocities. A simulation model is built up in Matlab/Simulink based on the proposed mathematical model to simulate the trajectory and momentum. The results show that sit-to-stand motion is carried out steadily with different assistant velocities of the robot. Through the analysis of horizontal and vertical peak center-of-mass momentum, it is found that the horizontal momentum is the determinant of the stable standing up motion, and the vertical momentum is the determinant of the complete sit-to-stand process. The simulation and measuring curves fit well, which demonstrates the effectiveness of the proposed model in predicting body position and center-of-mass momentum during sit-to-stand motion. This work provides references for stable standing up analysis and robot assisted rehabilitation.

Key words: machine design, rehabilitative robot, assistive standing-up, mass center of human body, linear and angular momentum

中图分类号: 

  • R496
[1] 王志强,姜洪源,Roman Kamink. 辅助起立机器人轨迹追踪仿真及试验研究[J]. 医用生物力学,2013,28(2):171-177.
Wang Zhi-qiang, Jiang Hong-yuan, Roman Kamink. Simulation and experimental study on trajectory tracking of the assistive standing-up robot[J]. Journal of Medical Biomechanics,2013,28(2):171-177.
[2] Scarborough D M,McGibbon C A,Krebs D E. Chair rise strategies in older adults with functional limitations[J]. Journal of Rehabilitation Research & Development,2007,44(1):33-42.
[3] Neptune R R,McGowan C P. Muscle contributions to whole-body sagittal plane angular momentum during walking[J]. Journal of Biomechanics,2011,44(1):6-12.
[4] Musi c ' J,Kamnik R,Munih M. Model based inertial sensing of human body motion kinematics in sit-to-stand movement[J]. Simulation Modeling Practice and Theory,2008,16(8):933-944.
[5] Flaxman T E,Speirs A D,Benoit D L. Joint stabilisers or moment actuators: the role of knee joint muscles while weight-bearing[J]. Journal of Biomechanics,2012,45(15):2570-2576.
[6] Kaya B K,Krebs D E,Riley P O. Dynamic stability in elders: momentum control in locomotor ADL[J]. Journal of Gerontology: Medical Sciences,1998,53(2):126-134.
[7] 王志强. 站立康复功能辅助机器人系统的控制及其关键技术研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2014.
Wang Zhi-qiang. Control of the rehabilitative standing-up robot system for sit-to-stand motion and research on key technology[D]. Harbin:School of Mechatronics Engineering , Harbin Institute of Technology,2014.
[8] 王志强,姜洪源,Roman Kamink. 辅助起立机器人反馈控制与速度前馈控制性能对比[J]. 机器人学报,2012,34(6):641-645.
Wang Zhi-qiang,Jiang Hong-yuan,Roman Kamink. Performance comparison on assistive standing-up robot with feedback and velocity feed-forward control[J]. ROBOT,2012,34(6):641-645.
[9] De Leva P. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters[J]. Journal of Biomechanics,1996,29(9):1223-1230.
[1] 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776.
[2] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786.
[3] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[4] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[5] 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105.
[6] 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113.
[7] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[8] 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132.
[9] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[10] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[11] 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780.
[12] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786.
[13] 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795.
[14] 陈忠敏, 侯力, 段阳, 张祺, 杨忠学, 蒋易强. 新型摆线针轮行星减速器传动系统的振动特性[J]. 吉林大学学报(工学版), 2018, 48(1): 174-185.
[15] 刘念, 徐涛, 徐天爽, 胡贤磊, 刘维海. 基于差厚技术的汽车仪表板管梁轻量化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 199-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!