吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 872-877.doi: 10.13229/j.cnki.jdxbgxb201503027

• • 上一篇    下一篇

家蚕前部丝腺准静态轴向拉伸力学特性

田桂中1, 刘之岭1, 周宏根1, 宋江超2, 朱涛1   

  1. 1.江苏科技大学 机械工程学院,江苏 镇江 212003;
    2.中国农业科学院 蚕业研究所,江苏 镇江212018
  • 收稿日期:2013-08-17 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 周宏根(1976-),男,副教授,博士.研究方向:仿生机械和现代制造技术.E-mail:hgzhou205@163.com E-mail:tianshuanger@126.com
  • 作者简介:田桂中(1982-),男,副教授,博士.研究方向:仿生微机械和生物力学.
  • 基金资助:
    国家自然科学青年基金项目(51005108)

Quasi-static axial tensile mechanical characteristics of silkworm's anterior silk gland

TIAN Gui-zhong1, LIU Zhi-ling1, ZHOU Hong-gen1, SONG Jiang-chao2, ZHU Tao1   

  1. 1.School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
    2.Serictdtural Research lnsthute, Chinese Academy of Agrictdtural Sciences, Zhenjiang 212018, China
  • Received:2013-08-17 Online:2015-05-01 Published:2015-05-01

摘要: 为了研究仿生微通道的制作工艺和流动特性,提出了符合家蚕前部丝腺特征的生物软组织复合体准静态轴向拉伸力学性能测试方法。以五龄家蚕前部丝腺为试验对象,进行了准静态轴向拉伸试验,观测了拉伸试样断口形貌,测量了前部丝腺体和丝蛋白溶液纤维化过程(简称丝纤维)的准静态轴向拉伸力学性能。应用超弹性材料Ogden模型,构建了家蚕前部丝腺体和丝纤维的准静态轴向拉伸力学本构方程,利用ABAQUS软件进行了试验结果拟合,相关系数达98%以上。结果表明:家蚕前部丝腺体及其丝纤维具有优异的超弹性力学特征,且丝纤维力学性能优于丝腺体的。

关键词: 工程仿生学, 仿生微通道, 准静态轴向拉伸, 家蚕前部丝腺, 微流体系统, 生物力学

Abstract: In order to study the fabrication method and fluidic flow characteristics of bio-micro-channel, a novel measuring method of quasi-static axial tension (QSAT) is proposed for the compound of biological soft tissue with the characteristics of silkworm's anterior silk gland (SASG). The anterior silk gland of fifth instar silkworm is taken as the test material. The experiment of QSAT is conducted using electronic single fiber machine. The fracture morphology of the sample is observed by SEM. The QSAT performances of SASG and fibrosis process of silk protein solution, called as silk fibrosis, are measured. Using hyper-elastic Ogden model, the QSAT mechanical constitutive equations of SASG and silk fiber are established. Based on the model, the fitting curves of experiment data are obtained by ABAQUS with the correlation coefficient of above 98%. Results show that hyper-elastic mechanical property of both SASG and silk fiber is excellent, meanwhile silk fiber outperforms SASG.

Key words: engineering bionics, bionic micro-channel, quasi-static axial tension, silkworm's anterior silk gland, micro-fluidic system, biomechanics

中图分类号: 

  • TB17
[1] 侯丽雅,王振琪,章维一,等.金属微粉体脉冲输送的微特性实验[J].光学精密工程,2011,19(5):1030-1038.
Hou Li-ya, Wang Zhen-qi, Zhang Wei-yi, et al. Experiments of micro characteristics of pulse-transfer for micro metallic powders[J]. Optics and Precision Engineering,2011,19(5):1030-1038.
[2] Marsso S L, Giuri E, Canabese G, et al. A multilevel Lab on chip platform for DNA analysis[J]. Biomed Microdebices,2011(13):19-29.
[3] Lorenzini M, Morini G L, Salvigni S. Laminar, transitional and turbulent friction factors for gas flows in smooth and rough microtubes[J]. International Journal of Thermal Sciences,2010,49(2):248-255.
[4] 张高朋,田桂中,曹伟龙. 微流体系统中微通道制作工艺的研究进展[J]. 微纳电子技术,2013,50(8):512-517,527.
Zhang Gao-peng, Tian Gui-zhong, Cao Wei-long. Research progress of the micro-channel fabricating process in the microfluidic system[J]. Micronanoelectronic Technology,2013,50(8):512-517,527.
[5] Asakura T, Yao J M, Yang M Y, et al. Structure of the spinning apparatus of a wild silkworm Samia Cynthia ricini and molecular dynamics calculation on the structural change of the silk fibroin[J]. Polymer,2007,48:2046-2070.
[6] Holland C, Terry A E, Porter D, et al. Comparing the rheology of native spider and silkworm spinning dope[J]. Nature Materials,2006,5(11):870-875.
[7] 金媛,张耀鹏,杭怡春,等. 蚕体内不同丝腺部位丝蛋白溶液结构与性质的研究[J]. 高分子通报,2012(5):76-81.
Jin Yuan, Zhang Yao-peng, Hang Yi-chun,et al. Studies of the structures and properties of silk fibroin solution in different divisions of silk gland of silkworm[J]. Polymer Bulletin,2012(5):76-81.
[8] 任露泉,梁云虹. 生物耦合生成机制[J]. 吉林大学学报:工学版,2011,41(5):1348-1357.
Ren Lu-quan, Liang Yun-hong. Generation mechanism of biological coupling[J]. Jouranl of Jilin University (Engineering and Technology Edition),2011,41(5):1348-1357.
[9] 田桂中,刘之岭,宋江超,等. 基于图像处理的家蚕吐丝管轮廓检测方法研究[J]. 计算机工程与设计,2012,33(8):3117-3120,3129.
Tian Gui-zhong, Liu Zhi-ling, Song Jiang-chao,et al. Research of detection method of silkworm spinning tube contour based on digital image processing technology[J]. Computer Engineering and Design,2012,33(8):3117-3120, 3129.
[10] 《中国组织工程研究与临床康复》杂志社学术部. 软组织构建研究中的组织生物力学变化[J]. 中国组织工程研究与临床康复,2010,14(50):9407-9408.
[11] 黄燕平,郑永平. 离体软组织弹性的常用测试方法和应用[J]. 中国医疗设备,2011,26(6):1-9,27.
Huang Yan-ping, Zheng Yong-ping. Measurement of soft tissue elasticity in vitro-common methods and applica-tions[J]. China Medical Devices,2011,26(6):1-9,27.
[12] Fung Y C. Biomechanics:Mechanical Properties of Living Tissues[M]. New York:Springer,1993.
[1] 熙鹏,丛茜,王庆波,郭华曦. 仿生条纹形磨辊磨损试验及耐磨机理分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1787-1792.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 田为军, 王骥月, 李明, 张兴旺, 张勇, 丛茜. 面向水上机器人的水黾运动观测[J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[4] 陈吉清, 杜天亚, 兰凤崇. 钝性碰撞中人体肝脏生物力学响应数值分析[J]. 吉林大学学报(工学版), 2018, 48(2): 398-406.
[5] 钱志辉, 周亮, 任雷, 任露泉. 具有仿生距下关节和跖趾关节的完全被动步行机[J]. 吉林大学学报(工学版), 2018, 48(1): 205-211.
[6] 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184.
[7] 陈东辉, 刘伟, 吕建华, 常志勇, 吴婷, 慕海锋. 基于虾夷扇贝体表结构的玉米茬根捡拾器仿生设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[8] 王颖, 李建桥, 张广权, 黄晗, 邹猛. 基于多种介质的仿生步行足力学特性[J]. 吉林大学学报(工学版), 2017, 47(2): 546-551.
[9] 高继东, 曾必强, 彭伟. 电动自行车与轿车碰撞中骑车人的伤害特征[J]. 吉林大学学报(工学版), 2016, 46(6): 1786-1791.
[10] 葛长江, 叶辉, 胡兴军, 于征磊. 鸮翼后缘噪声的预测及控制[J]. 吉林大学学报(工学版), 2016, 46(6): 1981-1986.
[11] 李梦, 苏义脑, 孙友宏, 高科. 高胎体仿生异型齿孕镶金刚石钻头[J]. 吉林大学学报(工学版), 2016, 46(5): 1540-1545.
[12] 梁云虹, 任露泉. 自然生境及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(5): 1746-1756.
[13] 梁云虹, 任露泉. 人类生活及其仿生学初探[J]. 吉林大学学报(工学版), 2016, 46(4): 1373-1384.
[14] 钱志辉, 苗怀彬, 任雷, 任露泉. 基于多种步态的德国牧羊犬下肢关节角[J]. 吉林大学学报(工学版), 2015, 45(6): 1857-1862.
[15] 邹猛, 于用军, 张荣荣, 魏灿刚, 王会霞. 仿牛角结构薄壁管吸能特性仿真分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1863-1868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!