吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 998-1004.doi: 10.13229/j.cnki.jdxbgxb201503046

• • 上一篇    下一篇

基于邻域加权的多层次模糊边缘检测算法

张文杰1, 熊庆宇2, 石为人1, 陈舒涵1   

  1. 1.重庆大学 自动化学院,重庆 400030;
    2. 重庆大学 软件学院,重庆 401331
  • 收稿日期:2013-10-23 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 熊庆宇(1963-),男,教授,博士生导师.研究方向:智能系统与智能计算,自组织网络与控制. E-mail:daaiyiyejian@cqu.edu.cn
  • 作者简介:张文杰(1987-),男,博士研究生.研究方向:图像处理与智能计算.
  • 基金资助:
    国家自然科学基金项目(90820017); 国家科技重大专项项目(2011BAJ03B13)

Weighted neighbor-region based multi-level fuzzy edge detection method

ZHANG Wen-jie1, XIONG Qing-yu2, SHI Wei-ren1, CHEN Shu-han1   

  1. 1.College of Automation, Chongqing University, Chongqing 400030, China;
    2.The School of Software Engineering, Chongqing University, Chongqing 401331, China
  • Received:2013-10-23 Online:2015-05-01 Published:2015-05-01

摘要: 针对目前边缘检测方法在低对比度图像、噪声图像中检测效果不理想的问题,本文结合微分算子和模糊边缘检测的优点,提出一种基于邻域加权的多层次模糊边缘检测方法。首先,利用微分算子计算图像梯度特征,依据图像梯度特征对图像进行自适应地分层;然后构造模糊函数,用模糊函数增强不同强度的图像梯度特征,取得了较好的边缘检测结果。仿真实验表明:基于邻域加权的多层次模糊边缘检测算法能较好地检测低对比度图像的边缘,同时能有效抑制椒盐噪声、高斯噪声对图像边缘检测的干扰。

关键词: 信息处理技术, 边缘检测, 邻域加权, 分层模糊增强

Abstract: Most existing edge detection methods can not perform well in low contrast image and noise images. Combing the advantages of differential operator and fuzzy edge detection, a novel multi-level fuzzy edge detection method based on weighted neighbor-region is proposed. First, this method computes the image gradient features, and utilizes the adaptive method to divide image into multiple tiers based on gradient. Then, a fuzzy function is constructed to strengthen different image gradient features in different levels. Experiment results show that the proposed approach can highlight the gradient features in low contrast region of an image with the help of strengthening. Also this approach outperforms the state-of-art methods in terms of both visual quality and noise (Salt and Pepper noise and Gaussian noise) suppression.

Key words: information processing, edge detection, weighted neighbor-region, stratified fuzzy enhancement

中图分类号: 

  • TN911.73
[1] 陈超. MATLAB应用实例精讲:图像处理与GUI设计篇[M]. 北京:电子工业出版社,2011:179-188.
[2] Reza-Alikhani H, Naghsh A, Jalali-Varnamkhasti R. Edge detection of digital images using a conducted ant colony optimization and intelligent thresholding[C]∥Proceedings of 2013 First Iranian Conference on Pattern Recognition and Image Analysis, Birjand,2013:1-6.
[3] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986(6):679-698.
[4] Abid S, Fnaiech F, Ben Braiek E. A novel neural network approach for image edge detection[C]∥Proceedings of 2013 International Conference on Electrical Engineering and Software Applications, Hammamet,Algeria,2013:1-6.
[5] Zhang Jin-ping,Lian Yong-xiang,Dong Lin-fu,et al. A new method of fuzzy edge detection based on Gauss function[C]∥Proceedings of the 2nd International Conference on Computer and Automation Engineering,Singapore,2010:559-562.
[6] Pal S K, King R A. On edge detection of X-ray images using fuzzy sets[J]. Pattern Analysis and Machine Intelligence,1983(1):69-77.
[7] 陈大伟,刘海龙,李金屏. 复杂静态背景下多移动目标实时检测系统的FPGA实现[J]. 吉林大学学报:工学版,2013,43(增刊1):287-290.
Chen Da-wei, Liu Hai-long, Li Jin-ping. FPGA implementation of real-time detection system of moving objects in complicated static background[J]. Journal of Jilin University (Engineering and Technology Edition),2013,43(Sup.1):287-290.
[8] Chiang M L,Lau S H. Automatic multiple faces tracking and detection using improved edge detector algorithm[C]∥Proceedings of 2011 7th International Conference on Information Technology in Asia, Kuching, Sarawak,2011:1-5.
[9] Huang J,You X G,Tang Y Y,et al. A novel iris segmentation using radial-suppression edge detection[J]. Signal Processing,2009,89(12):2630-2643.
[10] 冯珂,朱敏,钟煜,等. 一种改进的canny边缘检测AGT算法[J]. 计算机应用与软件,2012,29(3):265-267.
Feng Ke, Zhu Min,Zhong Yu, et.al. An improved canny edge detection AGT algorithm[J]. Computer Applications and Software,2012, 29(3):265-267.
[11] Zhao Hui-li,Qin Guo-feng,Wang Xing-jian. Improvement of canny algorithm based on pavement edge detection[C]∥Proceedings of 2010 3rd International Congress on Image and Signal Processing,Yantai,China,2010:964-967.
[12] 曲智国,王平,高颖慧,等. 基于开关式周围抑制的轮廓检测方法[J]. 吉林大学学报:工学版,2012,42(6):1602-1607.
Qu Zhi-guo,Wang Ping,Gao Ying-hui,et al. Contour detection based on switching surround suppression[J]. Journal of Jilin University (Engineering and Technology Edition),2012,42(6):1602-1607.
[13] 杨勇,黄淑英. 一种改进的Pal和King模糊边缘检测[J]. 仪器仪表学报,2008,9(9):1918-1923.
Yang Yong, Huang Shu-ying. A modified Pal and King algorithm for fuzzy edge detection[J]. Chinese Journal of Scientific Instrument,2008,9(9):1918-1923.
[14] Zhang Jin-ping,Lian Yong-xiang,Dong Lin-fu,et al. A new method of fuzzy edge detection based on gauss function[C]∥2010 the 2nd International Conference on Computer and Automation Engineering,Singapore,2010:559-562.
[15] 洪文松,陈武凡. 实现图像边缘检测的改进广义模糊算子法[J]. 中国图象图形学报,1999,2(4):143-147.
Hong Wen-song,Chen Wu-fan. An improved GFO (Generalized fuzzy operator) algorithm for high quality edge-detection of images[J]. China Journal of Image and Graphics,1999,2(4):143-147.
[16] Zhou Ji-hong,Lu Jun,Ling Xian-qing. An adaptive fuzzy entropy algorithm in image edge detection[C]∥Proceedings of 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control,Harbin,China,2012:371-374.
[17] Ma Wei-feng,Deng Cai-xia. An improved wavelet multi-scale edge detection algorithm[C]∥Proceedings of 2012 International Conference on Wavelet Analysis and Pattern Recognition,Xi'an,China,2012:302-306.
[18] Dun L, Dong Y. A multi-scale edge detection algorithm based on wavelet transform[C]∥Proceedings of 2012 Fifth International Conference on Intelligent Networks and Intelligent Systems,Tianjin,China,2012:21-24.
[19] 冈萨雷斯,伍兹,埃丁斯,等. 数字图像处理: MATLA版[M]. 北京:电子工业出版社, 2005:280-295.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!