吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1281-1287.doi: 10.13229/j.cnki.jdxbgxb201504037

• • 上一篇    下一篇

多相流数值模拟中复杂地质体网格剖分实现技术

杨艳林, 靖晶, 杨志杰, 许天福, 王福刚   

  1. 吉林大学 地下水资源与环境教育部重点实验室,长春 130021
  • 收稿日期:2014-04-08 出版日期:2015-07-01 发布日期:2015-07-01
  • 通讯作者: 王福刚(1975-),男,教授.研究方向:水文地质与环境地质.E-mail:wangfugang@jlu.edu.cn
  • 作者简介:杨艳林(1984-),男,博士研究生.研究方向:多相流多组分数值模拟与程序开发.E-mail:yangyanlinjida@gmail.com
  • 基金资助:
    中国地质调查局工作项目(12120113006300)

Grid subdivision technology for multiphase flow simulation with complex geological condition

YANG Yan-lin, JING Jing, YANG Zhi-jie, XU Tian-fu, WANG Fu-gang   

  1. Key Laboratory of Groundwater Resources and Environment,Ministry of Education, Jilin University, Changchun 130021,China
  • Received:2014-04-08 Online:2015-07-01 Published:2015-07-01

摘要: 考虑到复杂地质体的网格化剖分建模技术对多相流体数值模拟精准度的影响,提出了基于布点法构建任意多边形、任意约束的PEBI(Perpendicular bisection)多约束、交互式网格剖分实现技术与网格生成算法。网格生成过程包括五个方面:布点;三角剖分;查找不合格三角形,调整点布局;生成泰森多边;进行拓扑重构,生成二维、三维PEBI网格。剖分过程中将直井、水平井、断层等各种约束分别概化为点、线、区约束,基于泰森多边形的拓扑重构,完成PEBI网格的生成。将剖分算法耦合到作者前期开发的可视化建模软件TOUGHVISUAL上,并应用于几种典型复杂情况下地质体网格剖分建模,应用结果显示了本文方法的科学实用性和操作简便性。

关键词: 计算机应用, PEBI网格, 布点方法, 三角剖分

Abstract: Under complex geological condition, grid subdivision technology influences the accuracy of multiphase flow simulation. To meet the need of grid subdivision for multiphase flow simulation, a new algorithm is proposed to construct Perpendicular Bisection (PEBI) mesh of arbitrary shape with any constraints. This proposed algorithm for generating 2D and 3D PEBI grid includes five steps, e.g. point layout, triangle subdivision, unqualified triangles identification and point layout adjustment, Thiessen polygon generation, and topology reconstruction. In this process, various constraints (vertical wells, horizontal wells and faults) are reduced to point constraints, line constraints and area constraints, respectively. To provide a flexible way of arranging the point location, several common methods were expounded. The PEBI grid was created base on Thiessen polygon topology reconstruction. The proposed algorithm was applied to PEBI grid generation of several typical complicated geological conditions. The results demonstrate the feasible, simple and flexible characteristics of the proposed algorithm.

Key words: computer application, PEBI grid, distribution approach, triangular subdivision

中图分类号: 

  • TP391
[1] 国丽萍,刘承婷,刘保君. 石油工程多相流体力学[M]. 北京:中国石化出版社,2011.
[2] 凌建军,吴敬轩. 网格方向性对水驱油油藏数值模拟结果的影响[J]. 江汉石油学院学报,1990,12(1):40-45. Ling Jian-jun,Wu Jing-xuan. The influences of grid orientation on the results of reservoir simulation in oil reservoir drived by water[J]. Journal of JiangHan Petroleum Institute, 1990, 12(1):40-45.
[3] Heinemann Z E,Brand C W. Gridding techniques in reservoir simulation[C]∥Proceedings of the First and Second International Forum on Reservoir Simulation, Alpbach,Austria,1989:339-426.
[4] Palagi C L,Aziz K. Use of voronoi grid in reservoir simulation[J]. SPE Advanced Technology Series, 1994, 2(2):1-9.
[5] 向祖平,张烈辉,陈中华,等. 油藏任意约束平面域PEBI网格的生成算法[J]. 西南石油学院学报 2006,28(2):32-36. Xiang Zu-ping, Zhang Lie-hui, Chen Zhong-hua, et al. Algorithm for constructing PEBI mesh of arbitrarily shaped and constrained planar domains in oil reservoir[J]. Journal of Southwest Petroleum Institute, 2006, 28 (2):32-36.
[6] 蔡强,杨钦,孟宪海,等. 二维PEBI网格的生成[J]. 工程图学学报,2005,26(2):169-172. Cai Qiang, Yang Qin, Meng Xian-hai, et al. Research on 2D PEBI grid generation[J]. Journal of Engineering Graphics,2005,26(2):169-172.
[7] 查文舒,李道伦,卢德唐,等. 井间干扰条件下PEBI网格划分研究[J]. 石油学报,2008,29(5):742-746. Zha Wen-shu, Li Dao-lun, Lu De-tang, et al. PEBI grid division in inter-well interference area[J]. Acta Petrolet Sinca, 2008, 29 (5):742-746.
[8] 王星,常铁龙,马艳,等. 基于PEBI网格的多分支水平井井型优化研究[J]. 钻采工艺,2010,33(4):45-48. Wang Xing, Chang Tie-long, Ma Yan, et al. Optimization of multi-lateral horizontal wells based on PEBI grid[J]. Drilling and Production Technology,2010, 33(4):45-48.
[9] 刘立明,廖新维,陈钦雷. 混合PEBI网格精细油藏数值模拟应用研究[J]. 石油学报,2003,24(3):64-67. Liu Li-ming,Liao Xin-wei, Chen Qin-lei. Usage of hybrid PEBI grid in fine reservoir simulation[J]. Acta Petrolei Sinca,2003, 24 (3):64-67.
[10] 王代刚,侯健,邢学军,等. 基于前沿推进的改进型PEBI网格生成方法[J]. 计算物理, 2012, 29(5):675-683. Wang Dai-gang, Hou Jian, Xing Xue-jun, et al. Modified PEBI grid generation method with advanceing front approach[J]. Chinese Journal of Computational Physics, 2012, 29 (5):675-683.
[11] Delaunay Boris. Sur la sphere vide[J].Bulletin of the Academy of Sciences of the USSR, Classe des Sciences Mathematiques et Naturelles,1934(8):793-800.
[12] Thiessen A H. Precipitation averages for large areas[J]. Monthly Weather Review, 1911, 39(7):1082-1084.
[13] 李海峰,吴冀川,刘建波,等. 有限元网格剖分与网格质量判定指标[J]. 中国机械工程, 2012,23(3): 368-377. Li Hai-feng, Wu Ji-chuan, Liu Jian-bo, et al. Finite element mesh generation and decision criteria of mesh quality[J]. China Mechanical Engineering, 2012, 23(3): 368-377.
[14] 丁永祥. 约束Delaunay三角剖分与有限元网格自动生成[J]. 华中理工大学学报,1995,23(6):39-43. Ding Yong-xiang. The constrained delaunay triangulation and the automatic generation of finite element meshes[J]. Journal of Huazhong University of Science and Technology, 1995, 23(6): 39-43.
[15] Okabe A, Boots B, Sugihara K, et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[M]. 2nd ed. Chichester: John Wiley & Sons, 2008.
[16] Brassel K E,Reif D. A procedure to generate thiessen polygons[J]. Geographical Analysis, 1979, 11(3):289-303.
[17] 刘少华,罗小龙,何幼斌,等. 基于Delauany三角网的泰森多边形生成算法研究[J]. 长江大学学报(自然科学版)理工卷, 2007,4(1):100-103. Liu Shao-hua,Luo Xiao-long,He You-bin,et al. Based on Delauany theissen polygon generation algorithm of triangulation[J]. Journal of Yangtze University(Natural Science Edition)Science and Engineering Volume, 2007, 4(1):100-103.
[18] Yang Yan-lin, Xu Tian-fu, Wang Fu-gang,et al. A user friendly pre-processing and post-processing graphical interface graphical for toughreact transport of unsaturated groundwater and heat[C]∥TOUGH Symposium, Berkely, USA, 2012: 814-822.
[19] 李孟涛,单文文,刘先贵,等. 超临界二氧化碳混相驱油机理实验研究[J]. 石油学报, 2006,27(3):80-83. Li Meng-tao, Shan Wen-wen, Liu Xian-gui, et al. Laboratory study on miscible oil displacement mechanism of supercritical carbon dioxide[J]. Acta Petrologica Sinica,2006, 27(3):80-83.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!