吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1731-1736.doi: 10.13229/j.cnki.jdxbgxb201505050

• • 上一篇    

基于时间反转算子分解的选择性聚焦方法

付永庆, 刘伟   

  1. 哈尔滨工程大学 信息与通信工程学院, 哈尔滨 150001
  • 收稿日期:2014-03-13 出版日期:2015-09-01 发布日期:2015-09-01
  • 作者简介:付永庆(1956-),男,教授.研究方向:通信与信息处理,阵列信号处理.E-mail:fuyongqing@hrbeu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61172038)

Selective focusing method with decomposition of the time reversal operator

FU Yong-qing, LIU Wei   

  1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2014-03-13 Online:2015-09-01 Published:2015-09-01

摘要: 为了实现电磁平面波在不同目标上的选择性聚焦,提出了一种基于波动方程时间反转不变性的时间反转算子分解算法。该算法利用天线阵列发射和接收的目标探测信号获得传输矩阵和时间反转算子,然后对该算子进行特征值分解,其中非零主特征值的个数对应目标个数,而每个非零主特征值所对应的主特征向量则包含了相应目标的方位信息。根据每个目标相对应的特征向量计算目标域中各观测点的目标函数可获得目标域中的目标函数值分布情况,并实现在不同目标处的选择性聚焦。最后,通过仿真实验验证了电磁平面波情况下基于时间反转算子分解的选择性聚焦方法的准确性和有效性。

关键词: 信息处理技术, 选择性聚焦, 时间反转算子分解, 特征向量

Abstract: In order to achieve the selective focusing on different targets in electromagnetic plane wave, a decomposition method of the time reversal operator based on the time reversal invariance of wave equation is proposed. In this method, the transfer matrix and time reversal operator are obtained by emitting and receiving the signal for detecting targets with the antenna array. Then, the time reversal operator is used to perform eigenvalue decomposition. In eigenvalue decomposition, the number of nonzero main eigenvalues is the same as the number of targets, and the main eigenvectors corresponding with these nonzero main eigenvalues contain the direction information of the targets. According to these eigenvectors of targets to calculate the objective function of every detection point in the given target area can be obtained the objective function value distribution of the target area, and achieve the selective focusing on different targets. Finally, the simulations are performed and the results show that the selective focusing method with decomposition of the time reversal operator in electromagnetic plane wave is effective.

Key words: information processing, selective focusing, decomposition of the time reversal operator, eigenvector

中图分类号: 

  • TN911
[1] Fink M, Prada C, Wu F, et al. Self focusing in inhomogeneous media with time reversal acoustic mirrors[C]∥IEEE Ultrasonics Symposium Proceedings, Montreal, Que: IEEE, 1989: 681-686.
[2] Song H C, Kuperman W A, Hodgkiss W S, et al. Iterative time reversal in the ocean[J]. Journal of the Acoustical Society of America, 1999, 105 (6): 3176-3184.
[3] Sheng X L, Bao X Z, Hui J Y, et al. Underwater Passive Location Technology Using Dummy Time-reversal Mirror[M]. Lecture Notes in Computer Science, Berlin: Springer, 2008: 605-612.
[4] Thomas J L, Fink M. Self focusing on extended objects with time reversal mirror, application to lithotripsy[C]∥IEEE Ultrasonics Symposium Proceedings, Cannes, France: IEEE, 1994: 1809-1814.
[5] 赵乃至, 阎石, 齐霁. 基于时间反转法的管道周向裂缝损伤检测[J]. 沈阳建筑大学学报, 2013, 29 (1): 44-49. Zhao Nai-zhi, Yan Shi, Qi Ji. The pipeline circumferential cracks damage detection based on time reversal method[J]. Journal of Shenyang Jianzhu University, 2013, 29 (1): 44-49.
[6] 李壮, 乔钢, 王健培, 等. 基于虚拟时间反转镜的短基线定位研究[J]. 应用声学, 2012, 31 (4): 256-261. Li Zhuang, Qiao Gang, Wang Jian-pei, et al. Short baseline positioning based on virtual time reversal mirror[J]. Applied Acoustics, 2012, 31 (4): 256-261.
[7] Khan W N, Zubair M, Wyne S, et al. Performance evaluation of time-reversal on measured 60 GHz wireless channels[J].Wireless Personal Communications, 2013, 71 (1): 701-707.
[8] Chen Y, Yang Y H, Han F, et al. Time-reversal wideband communications[J]. IEEE Signal Processing Letters, 2013, 20 (12): 1219-1222.
[9] Choi H, Ogawa Y T, Ohgane T. Time-reversal MUSIC imaging with time-domain gating technique[J]. IEICE Transactions on Communications, 2012, E95-B (7): 2377-2385.
[10] Liu X F, Wang B Z, Li J L. Transmitting-mode time reversal imaging using MUSIC algorithm for surveillance in wireless sensor network[J]. IEEE Transactions on Antennas and Propagation, 2012, 60 (1): 220-230.
[11] Fu Y Q, Jiang Y L, Liu Z Y. Near-field source localization method and application using the time reversal mirror technique[J]. Journal of Electronics (China), 2011, 28 (4): 531-538.
[12] 夏云龙, 付永庆. 时间反转算子特征值分解算法[J]. 哈尔滨工程大学学报, 2008, 29 (12): 1340-1343. Xia Yun-long, Fu Yong-qing. Eigenvalue decomposition algorithm for time reversal operators[J]. Jousnal of Harbin Engineering University, 2008, 29 (12): 1340-1343.
[13] Prada C, Mannecille A, Spoliansky D, et al. Decomposition of the time reversal operator: Detection and selective focusing on two scatters[J]. Journal of the Acoustical Society of America, 1996, 99 (4): 2067-2076.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!