吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 2069-2074.doi: 10.13229/j.cnki.jdxbgxb201506048

• • 上一篇    下一篇

改进的粒子滤波重采样算法

李娟1, 刘晓龙1, 卢长刚2, 左英泽1   

  1. 1.吉林大学 通信工程学院,长春 130012;
    2.吉林大学 汽车工程学院,长春 130022
  • 收稿日期:2014-07-08 出版日期:2015-11-01 发布日期:2015-11-01
  • 作者简介:李娟(1970-),女,副教授,博士.研究方向:信号与信息处理.E-mail:ljuan@jlu.edu.cn
  • 基金资助:
    吉林省科技厅重点科技攻关项目(20140204044GX)

Improvement of resampling algorithm of particle filter

LI Juan1, LIU Xiao-long1, LU Chang-gang2, ZUO Ying-ze1   

  1. 1.College of Communication Engineering, Jilin University, Changchun 130012, China;
    2.College of Automotive Engineering, Jilin University, Changchun 130022, China
  • Received:2014-07-08 Online:2015-11-01 Published:2015-11-01

摘要: 针对粒子滤波算法粒子退化的问题,提出了分类重采样(CR)算法。根据重采样时筛选出粒子数目的多少采用不同类型的复制方案,并在有效粒子减少的情况下,及时补充新粒子。仿真结果表明:当选取的粒子数目较少或者仿真周期较长时,该算法相比较多项式重采样(MR)算法和系统重采样(SR)算法具有较小的均方根误差,且多次仿真得到的均方根误差(RMSE)的方差也相对较小,说明该算法在鲁棒性、持久性和稳定性方面有所改善。

关键词: 信息处理技术, 粒子滤波, 粒子退化, 重采样算法, 分类重采样

Abstract: To solve the problem of particles degeneracy in the particle filter algorithms, a Classified Resampling (CR) algorithm is proposed. This algorithm adopts different duplication schemes according to the quantity of selected particles; furthermore, it replenishes new particles in the case that the number of effective particles is reduced. Simulation results demonstrate that, with smaller number of particles or longer simulation period, the proposed algorithm has minor Root Mean Square Error (RMSE) compared with Multinomial Resampling (MR) and Systematic Resampling (SR), and with multiple simulations the variance of RMSE is smaller, which indicates that the robustness, durability and stability of the proposed algorithm are improved.

Key words: information processing, particle filters, particles degeneracy, resampling algorithm, classified resampling

中图分类号: 

  • TN911.7
[1] 陈飞. 基于粒子滤波的无线传感器网络目标跟踪算法研究[D].长春:吉林大学通信工程学院,2009.
Chen Fei. The target tracking algorithm research based on particle filtering in wireless sensor network[D]. Changchun: College of Communication Engineering, Jilin University, 2009.
[2] Gustafsson F, Gunnarsson F, Bergman N, et al. Particle filters for positioning, navigation, and tracking[J]. IEEE Transactions on Signal Processing, 2002,50(2):425-437.
[3] Gordon N, Salmond D. Novel approach to nonlinear and non-Gaussian Bayesian state estimation[J]. IEE Proc of Institute Electric Engineering,1993,140(2):107-113.
[4] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Proceedings on Signal Processing,2002,50(2):174-188.
[5] Liu J S, Chen R. Sequential monte carlo methods for dynamic systems[J]. Journal of the American Statistical Association,1998,93(443):1032-1044.
[6] Li T C, Sattar T P, Sun S D. Deterministic resampling: unbiased sampling to avoid sample impoverishment in particle filters[J]. Signal Process,2012,92(7):1637-1645.
[7] Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association,1999,94(446):590-599.
[8] 高建坡,韦志辉,孟迎军,等. 基于观测似然重要性采样的粒子滤波算法[J]. 系统仿真学报,2009,21(12):3705-3709.
Gao Jian-po, Wei Zhi-hui, Meng Ying-jun, et al. Particle filter based on observation likelihood importance sampling[J]. Journal of System Simulation,2009,21(12):3705-3709.
[9] 胡士强,敬忠良. 粒子滤波算法综述[J]. 控制与决策,2005,20(4):361-365.
Hu Shi-qiang, Jing Zhong-liang. Overview of particle filter algorithm[J]. Control and Decision,2005,20(4):361-365.
[10] 胡研研. 基于粒子滤波的目标跟踪算法研究[D].长春:吉林大学通信工程学院,2012.
Hu Yan-yan. Research on target tracking algorithm based on particle filter[D]. Changchun: College of Communication Engineering, Jilin University,2012.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!