吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 303-310.doi: 10.13229/j.cnki.jdxbgxb201601046

• • 上一篇    下一篇

具有固定反馈权的自适应宽带波束形成器设计

吴凯, 苏涛, 靳标, 杨涛   

  1. 西安电子科技大学 雷达信号处理国家重点实验室,西安 710071
  • 收稿日期:2014-06-12 出版日期:2016-01-30 发布日期:2016-01-30
  • 作者简介:吴凯(1990-),男,博士研究生.研究方向:宽带阵列信号处理.E-mail:ookaykay@163.com
  • 基金资助:
    国家自然科学基金项目(61271291,61201285); 教育部新世纪优秀人才支持计划项目(NCET-09-0630)

Design of adaptive broadband beamformer with fixed feedback weights

WU Kai, SU Tao, JIN Biao, YANG Tao   

  1. National Lab of Radar Signal Processing, Xidian University, Xi'an 710071, China
  • Received:2014-06-12 Online:2016-01-30 Published:2016-01-30

摘要: 将一条具有固定系数的反馈支路引入广义旁瓣相消器(Generalized sidelobe canceller, GSC),设计了一种新的自适应宽带波束形成器。通过逼近包含干扰频带的带通滤波器,离线设计最优反馈权。研究了波束形成器的干扰抑制能力与反馈支路极点个数之间的关系。与现有含反馈波束形成器的仿真对比结果表明:由于本文波束形成器的前向支路与传统GSC相同,降低了自适应权更新的复杂性和运算量;无需极点的自适应更新,具有固有稳定性;极点个数灵活可变,增强了干扰抑制能力。

关键词: 信息处理技术, 宽带自适应波束形成, 广义旁瓣相消, 固定反馈权, 信号和干扰噪声比

Abstract: By introducing a feedback branch with fixed weights, a new adaptive broadband beamformer based on the Generalized Sidelobe Canceller (GSC) is designed. The feedback weights are obtained off-line through approximating the band-pass filter whose passband covers that of the interference. Also, the relationship between the interference suppression capability of the beamformer and the number of poles of the feedback branch is investigated. Compared with existing beamformer, since the feedforward branch of the new beamformer is exactly the same as the GSC, the complexity and amount of calculations of the updating procedure for feedforward weights are reduced. Meanwhile, the fixed feedback weights guarantee its stability. Besides, the flexibility of changing the number of poles strengths its interference suppression capability.

Key words: information processing, broadband adaptive beamforming, generalized sidelobe canceller, fixed feedback weights, signal to interference pulse noise ratio

中图分类号: 

  • TN958.92
[1] Melvin W, Scheer J. Principles of Modern Radar: Advanced Techniques[M]. Raleigh, NC: SciTech Publishing, Inc, 2013: 441-449.
[2] Yan S, Sun H, Ma X, et al. Time-domain implementation of broadband beamformer in spherical harmonics domain[J]. IEEE Trans on Audio, Speech, and Language Processing, 2011, 19(5): 1221-1230.
[3] Godara L C. Application of antenna arrays to mobile communications. II. beam-forming and direction-of-arrival considerations[C]∥Proc IEEE, New York, 1997: 1195-1245.
[4] Frost III O L. An algorithm for linearly constrained adaptive array processing[C]∥Proc IEEE,New York, 1972: 926-935.
[5] 韦文,李宁,汤俊,等. 基于分数时延的宽带自适应波束形成[J].清华大学学报: 自然科学版, 2011, 51(7): 988-992.
Wei Wen, Li Ning, Tang Jun, et al. Broadband adaptive digital beamforming based on fractional delay[J]. Journal of Tsinghua University (Science and Technology Edition), 2011, 51(7): 988-992.
[6] 鄢社锋,马晓川. 宽带波束形成器的设计与实现[J]. 声学学报, 2008, 33(4): 316-326.
Yan She-feng, Ma Xiao-chuan. Designs and implementations of broadband beamformers[J]. Acta Acustica, 2008, 33(4): 316-326.
[7] Griffiths L J, Jim C W. An alternative approach to linearly constrained adaptive beamforming[J]. IEEE Trans on Antennas and Propagation, 1982, 30(1): 27-34.
[8] 李涛,李国林,廖辉荣. 基于广义旁瓣相消器的滤波器组旁瓣干扰抑制[J]. 电子与信息学报, 2011, 33(1): 85-89.
Li Tao, Li Guo-lin, Liao Hui-rong. Side-lobe interference suppression for filter banks based on GSC[J]. Journal of Electronics and Information Technology, 2011, 33(1): 85-89.
[9] Vook F W, Compton R T Jr. Bandwidth performance of linear adaptive arrays with tapped delay-line processing[J]. IEEE Trans on Aerospace and Electronic Systems, 1992, 28(2): 901-908.
[10] Duan H P, Ng B P, See C M S. A new broadband beamformer using IIR filters[J].IEEE Letters on Signal Processing, 2005, 12(11): 776-779.
[11] Duan H P, Ng B P, See C M S, et al. Broadband beamforming using TDL-form IIR filters[J].IEEE Trans on Signal Processing, 2007, 55(3): 990-1002.
[12] Seydnejad S R, Ebrahimi R. Broadband beamforming using Laguerre filters[J]. Elsevier Journal on Signal Proc, 2012, 92(4):1093-1100.
[13] Shaw A. An optimal method for identification of pole-zero transfer functions[C]∥IEEE International Symposium on Circuits and Systems, NY, USA, 1992: 2409-2412.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!