吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1090-1096.doi: 10.13229/j.cnki.jdxbgxb201604012

• 论文 • 上一篇    下一篇

基于应变监测的连续梁支承差异沉降识别

王少杰1, 2, 徐赵东3, 李舒1, 王凯洋1 ,Dyke Shirley J2   

  1. 1.东南大学 混凝土及预应力混凝土结构教育部重点实验室,南京 210096;
    2.普渡大学 土木工程学院,美国 西拉斐特 47907;
    3.南京东瑞减震控制科技有限公司,南京 210033
  • 收稿日期:2015-03-05 出版日期:2016-07-20 发布日期:2016-07-20
  • 通讯作者: 徐赵东(1975-),男,教授,博士生导师.研究方向:结构健康监测,结构抗震及减振.E-mail:zhdxu@163.com
  • 作者简介:王少杰(1985-),男,博士研究生.研究方向:结构检测、监测与车桥耦合振动.E-mail:tumuwsj@163.com
  • 基金资助:

    江苏省杰出青年基金项目(BK20140025); 江苏省自然科学基金项目(BK20151092); 科技部中青年科技创新领军人才项目; 江苏省普通高校研究生科研创新计划项目(CXLX13_102,CXZZ12_0108); 中央高校基本科研业务费专项资金项目(3205004907)

Differential settlement identification of pier for continuous beam based on strain monitoring

WANG Shao-jie1, 2, XU Zhao-dong3, LI Shu1, WANG Kai-yang1, Dyke Shirley J2   

  1. 1.Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China;
    2.School of Civil Engineering, Purdue University, West Lafayette 47907, USA;
    3.Nanjing Dongrui Damping Control Technology Co.,Ltd.,Nanjing 210033,China
  • Received:2015-03-05 Online:2016-07-20 Published:2016-07-20

摘要:

首先,运用基本力学原理,以三跨相等连续梁为对象,推导了梁体应变改变量与支承差异沉降量之间的解析式;并以某刚性轻轨桥为例,证明了微小支承差异沉降导致的应变改变量是可测的。其次,通过三跨不等连续梁模型试验,采用顶升方法模拟差异沉降,深入分析了梁底应变改变量与顶升量之间的关系,同时验证了FBG新型传感器的优越性能。再次,推导了与试验模型对应的梁底应变改变量与桥墩差异沉降之间的关系式,对两种模式(边墩顶升、中墩顶升)在不同差异沉降下的理论解与试验测试结果进行比较分析,结果表明二者吻合程度较高。最后,对识别基本流程与策略作了简要叙述。

关键词: 结构工程, 应变, 差异沉降, 连续梁, 模型试验

Abstract:

Based on measured strain data, a method of differential settlement identification of piers for continuous beam is proposed using theoretical and experimental analysis. First, the analytical formula with respect to the Variation of Strain Value (VSV) of the beam and the differential settlement identification of piers is derived by employing a three-equal-span continuous beam for instance. Also it is proved that the VSV result from minor differential settlement of piers is measureable in the case of a certain rigid light railway bridge. Second, the relationship between the VSV obtained from the bottom of the beam and the upright rectification value is analyzed using a three-unequal-span continuous beam for verification, where the settlement is simulated using the upright rectification method. Meanwhile, the performance of the new type Fiber Bragg Grating (FBG) sensors is demonstrated as well. Third, for the experimental model, the expression of the relationship between the VSV on the bottom of the beam and the differential settlement of the piers is derived, which reflects a well consistency between theoretical and experimental results in both cases (differential settlement of side pier and mid pier) under the condition of various degrees of differential settlement. Finally, the identification procedure and strategy are briefly clarified.

Key words: structure engineering, strain, differential settlement, continuous beam, model experiment

中图分类号: 

  • TU997
[1] 李国和, 孙树礼, 许再良, 等. 地面沉降对高速铁路桥梁工程的影响及对策[J]. 铁道工程学报, 2008, 24(4): 37-41, 61.
Li Guo-he, Sun Shu-li, Xu Zai-liang, et al. The influence of land subsidence on the bridge of high-speed railway and its engineering countermeasures[J]. Journal of Railway Engineering Society, 2008, 24(4): 37-41, 61.
[2] 邹振华. 不均匀沉降对大跨连续梁及轨道结构影响分析[J]. 铁道工程学报, 2014, 30(3): 61-65.
Zou Zhen-hua. Effects analysis of differential settlementon on long-span continuous bridge and ballastless track structure[J]. Journal of Railway Engineering Society, 2014, 30(3): 61-65.
[3] 王昆鹏, 夏禾, 郭薇薇, 等. 桥墩不均匀沉降对高速列车运行安全影响研究[J]. 振动与冲击, 2014, 33(6): 137-142, 155.
Wang Kun-peng, Xia He, Guo Wei-wei, et al. Influence of uneven settlement of bridge piers on running safely of high-speed trains[J]. Journal of Vibration and Shock, 2014, 33(6): 137-142, 155.
[4] Yau J D. Response of a train moving on multi-span railway bridges undergoing ground settlement[J]. Engineering Structures, 2009, 31(9): 2115-2122.
[5] 宋彦君. 梁式桥监测中的应变-位移转换技术及裂缝损伤识别方法研究[D]. 长春:吉林大学交通学院, 2012.
Song Yan-jun. Research on the crack identification method and strain-deflection transferring technology in beam bridge monitoring[D]. Changchun: College of Transportation, Jilin University,2012.
[6] 李惠, 欧进萍. 斜拉桥结构健康监测系统的设计与实现(Ⅱ): 系统实现[J]. 土木工程学报, 2006, 39(4): 45-53.
Li Hui, Ou Jin-ping. Design and implementation of health monitoring systems for cable-stayed bridges(Ⅱ): implementations[J]. China Civil Engineering Journal, 2006, 39(4): 45-53.
[7] 凌同华, 张胜, 李升冉, 等. 邻近隧道施工既有桥桩变形控制及注浆加固方案优化[J]. 中南大学学报:自然科学版, 2014, 45(7): 2394-2400.
Ling Tong-hua, Zhang Sheng, Li Sheng-ran, et al. Controlling of existing bridge piles deformation induced by adjacent tunneling and scheme of optimizing grouting reinforcement[J]. Journal of Central South University (Science and Technology), 2014, 45(7): 2394-2400.
[8] Moyo P, Brownjohn J M W, Suresh R, et al. Development of fiber Bragg grating sensors for monitoring civil infrastructure[J]. Engineering Structures, 2005, 27(12): 1828-1834.
[9] Cumunel G, Delepine-Lesoille S, Argoul P. Long-gage optical fiber extensometers for dynamic evaluation of structures[J]. Sensors and Actuators A: Physical, 2012, 184(3):1-15.
[10] 李爱群, 周广东. 光纤Bragg光栅传感器测试技术研究进展与展望(I): 应变、温度测试[J]. 东南大学学报:自然科学版, 2009, 39(6): 1298-1306.
Li Ai-qun, Zhou Guang-dong. Progress and prospect of fiber Bragg grating sensors measurement technology (I): strain and temperature measurement[J]. Journal of Southeast University (Science and Technology), 2009, 39(6): 1298-1306.
[11] 徐辉, 任伟新. 基于光纤光栅传感器的桥梁挠曲线测试[C]∥第16届全国结构工程学术会议论文集,北京, 2007: 407-410.
[12] 毅力琦, 丁克勤, 钱才富. 基于应变的长输管道变形计算方法研究[J]. 固体力学学报, 2011, 32(S1): 310-313.
Yi Li-qi, Ding Ke-qin, Qian Cai-fu. Research on calculation method of long-distance pipeline's deformation based on strain[J]. Chinese Journal of Solid Mechanics, 2011,32(S1):310-313.
[13] 沈圣, 吴智深, 杨才千, 等. 基于分布式光纤应变传感技术的改进共轭梁法监测结构变形分布研究[J]. 土木工程学报, 2010, 43(7): 63-70.
Shen Sheng, Wu Zhi-shen, Yang Cai-qian, et al. An improved conjugated beam method for structural deformation monitoring based on distributed optical fiber strain sensing technique[J]. China Civil Engineering Journal, 2010, 43(7): 63-70.
[1] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[2] 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1426-1435.
[3] 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123.
[4] 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[5] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[6] 李静, 王哲. 真三轴加载条件下混凝土的力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[7] 杨昕卉, 薛伟, 郭楠. 钢板增强胶合木梁的抗弯性能[J]. 吉林大学学报(工学版), 2017, 47(2): 468-477.
[8] 闫光, 庄炜, 刘锋, 祝连庆. 具有增敏效果的光纤光栅应变传感器的预紧封装及传感特性[J]. 吉林大学学报(工学版), 2016, 46(5): 1739-1745.
[9] 胡玉明, 黄音, 古海东. 排桩支护结构内力与变形三维有限元数值分析[J]. 吉林大学学报(工学版), 2016, 46(2): 445-450.
[10] 刘寒冰, 时成林, 谭国金, 王华, 黄彬. 基于分段思想的变截面连续梁桥动力特性计算[J]. 吉林大学学报(工学版), 2015, 45(6): 1779-1783.
[11] 张彦玲, 孙瞳, 侯忠明, 李运生. 隔板式钢-混凝土曲线组合梁弯扭性能[J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[12] 苏迎社,杨媛媛. 疏排桩支护结构中土拱荷载传递比分析[J]. 吉林大学学报(工学版), 2015, 45(2): 400-405.
[13] 孟广伟,李霄琳,李锋,周立明,王晖. 裂隙介质渗流的光滑多尺度有限元法[J]. 吉林大学学报(工学版), 2015, 45(2): 481-486.
[14] 宿晓萍,王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报(工学版), 2015, 45(1): 112-120.
[15] 杨爱武,周金,孔令伟. 固化吹填软土力学特性试验[J]. 吉林大学学报(工学版), 2014, 44(3): 661-667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!