吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1546-1551.doi: 10.13229/j.cnki.jdxbgxb201605024
金敬福1, 韩丽曼1, 曹敏2, 李杨1, 齐迎春1, 丛茜1,3
JIN Jing-fu1, HAN Li-man1, CAO Min2, LI Yang1, QI Ying-chun1, CONG Qian1,3
摘要: 利用自制的半导体制冷显微试验观察装置,对冷表面水滴结冰过程中的相变发生点、相变瞬间时长和相应的水滴体积变化规律进行了定量测定,并着重对水滴结冰相变过程中的直径变化系数、高度变化系数和体积膨胀系数进行统计分析。试验结果表明,冷表面水滴结冰过程中相变自下而上完成;结冰过程中水滴超过1.09的体积膨胀集中发生在相变瞬间;相对于液体进入过冷状态的时间,相变瞬间短暂而迅速。研究结论在解释结冰过程中的短时间内大体积膨胀系数及变形带来的冻胀危害根源的同时,提出利用水结冰过程中自发的相变膨胀释能来降低部件表面结冰附着强度,为一种新型除冰/防结冰方法提供了理论和试验依据。
中图分类号:
[1] Wu X M, Webb R L. Investigation of the possibility of frost release from a cold surface[J]. Experimental Thermal and Fluid Science, 2001, 24(3): 151-156. [2] Ryerson C C. Ice protection of offshore platforms[J]. Cold Regions Science and Technology, 2011, 65(1): 97-110. [3] Lee S, Bragg M B. Investigation of factors affecting iced-airfoil aerodynamics[J]. Journal of Aircraft, 2003, 40(3): 499-508. [4] Koenig G G, Ryerson C C. An investigation of infrared deicing through experimentation[J]. Cold Regions Science and Technology, 2011, 65(1): 79-87. [5] 李斌.飞机除冰防冰液及除冰技术[J]. 清洗世界,2012, 28(1): 26-31. Li Bin. Brief survey of deicing /anti-icing fluid and techniques for aircraft[J]. Cleaning World, 2012, 28(1): 26-31. [6] Parent O, Ilinca A. Anti-icing and de-icing techniques for wind turbines: critical review[J]. Cold Regions Science and Technology, 2011, 65(1): 88-96. [7] Lazauskas A, GuobieneA, Prosyˇcevas I, et al. Water droplet behavior on superhydrophobic SiO 2 nanocomposite films during icing/deicing cycles[J]. Materials Characterization, 2013, 82: 9-16. [8] 丁金波, 董威. 表面粗糙度对冰冻黏强度影响试验研究[J]. 航空发动机,2012, 38(4): 42-46. Ding Jin-bo, Dong Wei. Experimental study of influence of surface roughness on ice adhesion[J]. Aeroengine, 2012, 38(4): 42-46. [9] Kuhn T, Earle M E, Khalizov A F, et al. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets[J]. Atmospheric Chemistry and Physics, 2011, 11(6): 2853-2861. [10] Mishchenko L, Hatton B, Bahadur V, et al. Design of ice-freenanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12): 7699-7707. [11] Zou M, Beckford S, Wei R, et al. Effects of surface roughness and energy on ice adhesion strength[J]. Applied Surface Science, 2011, 257(8): 3786-3792. [12] Jung S, Tiwari M K, Doan N V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615. [13] Oberli L, Caruso D, Hall C, et al. Condensation and freezing of droplets on superhydrophobic surfaces[J]. Advances in Colloid and Interface Science, 2014, 210: 47-57. [14] Momen G, Jafari R, Farzaneh M. Ice repellency behaviour of superhydrophobic surfaces: effects of atmospheric icing conditions and surface roughness[J]. Applied Surface Science, 2015,349:211-218. [15] Fumoto K, Kawanami T. Study on freezing characteristics of supercooled water droplets impacting on solid surfaces[J]. Journal of Adhesion Science and Technology, 2012, 26(4/5): 463-472. [16] 王皆腾, 刘中良, 黄玲艳, 等. 冷空气中水滴的冷却与冻结过程研究[J]. 工程热物理学报, 2008,29(8):1360-1362. Wang Jie-teng,Liu Zhong-liang, Huang Ling-yan, et al. Investigation of cooling and freezing of water droplet in the cold air[J].Journal of Engineering Thermophysics, 2008,29(8):1360-1362. [17] 王皆腾, 刘中良, 勾昱君, 等. 冷表面上水滴冻结过程的研究[J]. 工程热物理学报, 2007, 28(6): 989-991. Wang Jie-teng, Liu Zhong-liang, Gou Yu-jun, et al. Study of freezing process of water droplet on cold surface[J]. Journal of Engineering Thermophysics, 2007, 28(6): 989-991. [18] 王皆腾, 刘中良, 勾昱君, 等.冷铜表面上水滴冻结时的变形[J]. 中国科学E辑:技术科学, 2006, 36(11): 1344-1354. [19] 陈廷坤. 冷表面结冰规律及防治新方法的研究[D]. 长春:吉林大学生物与农业工程学院, 2014. Chen Ting-kun. The law of cold surface freezing and new de-icing methods[D].Changchun: College of Biological and Agricultural Engineering, Jilin University,2014. |
[1] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[2] | 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751. |
[3] | 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126. |
[4] | 金敬福, 李杨, 陈廷坤, 丛茜, 齐迎春. 涂层弹性模量对结冰附着强度的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1548-1553. |
[5] | 张家陶, 赵宇光, 谭娟. 初始组织对电脉冲处理逆变奥氏体晶粒细化效果的影响[J]. 吉林大学学报(工学版), 2016, 46(1): 193-198. |
[6] | 庄蔚敏, 解东旋, 余天明, 于皖东. 基于损伤-相变本构模型的高强钢热成形数值模拟分析[J]. 吉林大学学报(工学版), 2015, 45(4): 1206-1212. |
[7] | 曹敏, 陈廷坤, 丛茜, 金敬福. 表面形态对结冰附着强度的影响[J]. 吉林大学学报(工学版), 2013, 43(05): 1314-1319. |
[8] | 朱丽娟, 谷诤巍, 吕义, 徐虹. 超高强钢热冲压硬化机理[J]. 吉林大学学报(工学版), 2013, 43(02): 376-379. |
[9] | 王文权, 商延赓, 李秀娟, 王春生, 张桂兰. 激光焊接650 MPa相变诱发塑性钢的组织与性能[J]. , 2012, 42(05): 1203-1207. |
[10] | 田继超,崔乃刚,荣思远. 卫星编队队形重构变轨方案[J]. 吉林大学学报(工学版), 2010, 40(04): 1161-1165. |
[11] | 苏俊林,王震坤,矫振伟 . 高效低排放气液直接混合相变换热供热装置[J]. 吉林大学学报(工学版), 2008, 38(02): 278-0282. |
[12] | 张培萍,刘淑凤,张立功,罗劲松,安立楠 . 高能振动球磨作用对纳米Al2O3相变温度的影响[J]. 吉林大学学报(工学版), 2006, 36(05): 715-0718. |
[13] | 李海波,刘立华,刘梅,郑伟涛. 纳米Fe-Cu体系的结构和电阻温度特性[J]. 吉林大学学报(工学版), 2006, 36(04): 476-479. |
[14] | 王瑛玮, 蒋引珊, 侯天意, 张军, 张延军, 孙申美. 粉碎方式对TiO2粉体的影响[J]. 吉林大学学报(工学版), 2005, 35(04): 348-352. |
[15] | 黄海珍, 王震坤, 苏俊林, 刘效洲. 真空相变供热系统的实验研究[J]. 吉林大学学报(工学版), 2004, (2): 241-243. |
|