吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 193-198.doi: 10.13229/j.cnki.jdxbgxb201601029

• • 上一篇    下一篇

初始组织对电脉冲处理逆变奥氏体晶粒细化效果的影响

张家陶, 赵宇光, 谭娟   

  1. 吉林大学 材料科学与工程学院, 长春 130022
  • 收稿日期:2014-07-24 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 赵宇光(1955-),男,教授,博士生导师.研究方向:金属基复合材料,电致强化.E-mail:zhaoyg@jlu.edu.cn
  • 作者简介:张家陶(1985-),男,博士研究生.研究方向:脉冲电流细化碳钢组织与逆相变机理.E-mail:jtzhang11@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51071075)

Effect of starting microstructure on refining potency of electro-pulsing on reverse austenite grain

ZHANG Jia-tao, ZHAO Yu-guang, TAN Juan   

  1. College of Materials Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2014-07-24 Online:2016-01-30 Published:2016-01-30

摘要: 通过金相组织观察、显微硬度测试,研究了电脉冲处理条件下,不同初始组织对逆变奥氏体晶粒细化效果的影响。结果表明:回火马氏体初始组织电脉冲奥氏体化过程为α+Fe3C→γ扩散型逆相变,逆变奥氏体晶粒获得超细化(dγ<5 μm),这证实了脉冲电流促进奥氏体形核率提高的理论分析;马氏体初始组织电脉冲奥氏体化过程为α'γ位移型逆相变;初始马氏体的原奥氏体晶界在逆相变过程中未发生变化,形成晶粒粗大的位移型逆变奥氏体;从位移型逆变奥氏体淬火得到的马氏体获得再次强化;升高电脉冲处理峰值温度,位移型逆变奥氏体发生再结晶;再结晶形核始于位移型逆变奥氏体晶界这唯一具有大角度位相差的区域;再结晶完成后,奥氏体平均晶粒直径为11 μm。

关键词: 金属材料, 逆相变, 脉冲电流处理, 晶粒细化

Abstract: The influence of starting microstructure on the austenite grain refining potency in Electro-Pulsing (EP) was investigated by microstructure observation and hardness testing. Results indicate that the mechanism of austenite formation from the starting tempered martensite during Electro-Pulsing Treatment (EPT) is occurred by the α + Fe3C → γ diffusional transformation, and austenite grains are ultra-refined (dγ < 5 μm). This verifies the analysis that the austenite nucleation rate can be increased by EPT. However, the reverse transformation from martensite during EPT occurs by the α'γ displacive transformation process. The prior austenite grain boundaries of the starting martensite are not changed during the reverse transformation, leading to the formation of coarse grained Displacive Reverse Austenite (DRA). Martensite transformed from DRA after quenching is strengthened. As the peak temperature is increased during EPT, the recrystallization of DRA is occurred. The nucleation recrystallization is started at the boundaries of DRA, where the high angle microstructure is only reversed after displacive reverse transformation. The mean size of the austenite grains is 11 μm after recrystallization.

Key words: metallic materials, reverse transformation, electropulsing treatment, grain refinement

中图分类号: 

  • TG161
[1] Cui H, Zong Y, Cang D, et al. Improving the solidification structure of commercially pure aluminium with electropulse acting on liquid metal[J]. Journal of University of Science and Technology Beijing, 2007, 14(4): 317-320.
[2] Zhou Y Z, Zeng Y, He G H, et al. The healing of quenched crack in 1045 steel under electropulsing[J]. Journal of Materials Research, 2001, 16(1): 17-19.
[3] Zhao Y G, Liang Y H, Zhou W, et al. Effect of a Current pulse on the thermal fatigue behavior of cast hot work die steel[J]. ISIJ International, 2005, 45(3): 410-412.
[4] Zhou Y, Xiao S, Guo J. Recrystallized microstructure in cold worked brass produced by electropulsing treatment[J]. Materials Letters, 2004, 58(12): 1948-1951.
[5] Zhou Y Z, Zhang W, Wang B Q, et al. Ultrafine-grained microstructure in a Cu-Zn alloy produced by electropulsing treatment[J]. Journal of Materials Research, 2003, 18(8): 1991-1997.
[6] Song H, Wang Z. Grain refinement by means of phase transformation and recrystallization induced by electropulsing[J]. Transactions of Nonferrous Metals Society of China, 2011,21(Sup.2): 353-357.
[7] Zhou Y Z, Guo J D, Zhang W, et al. Influence of electropulsing on nucleation during phase transformation[J]. Journal of Materials Research, 2002, 17(12): 3012-3014.
[8] Zhou Y Z, Zhang W, Wang B Q, et al. Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing[J]. Journal of Materials Research, 2002, 17(8): 2105-2111.
[9] Zhao Y, Ma B, Guo H, et al. Electropulsing strengthened 2 GPa boron steel with good ductility[J]. Materials and Design, 2013, 43: 195-199.
[10] Kasatkin O, Vinokur B, Pilyushenko V. Calculation models for determining the critical points of steel[J]. Metal Science and Heat Treatment, 1984, 26(1): 27-31.
[11] Apple C A, Krauss G. The effect of heating rate on the martensite to austenite transformation in Fe-Ni-C alloys[J]. Acta Metallurgica, 1972, 20(7): 849-856.
[12] Nakada N, Tsuchiyama T, Takaki S, et al. Transition from diffusive to displacive austenite reversion in low-alloy steel[J]. ISIJ International, 2013, 53(12): 2275-2277.
[13] Nakada N, Fukagawa R, Tsuchiyama T, et al. Inheritance of dislocations and crystallographic texture during martensitic reversion into austenite[J]. ISIJ International, 2013, 53(7): 1286-1288.
[14] Doherty R, Hughes D, Humphreys F, et al. Current issues in recrystallization: a review[J]. Materials Science and Engineering: A, 1997, 238(2): 219-274.
[15] Jiang Y, Tang G, Shek C, et al. Mechanism of electropulsing induced recrystallization in a cold-rolled Mg-9Al-1Zn alloy[J]. Journal of Alloys and Compounds, 2012,536: 94-105.
[1] 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805.
[2] 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[3] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[4] 汤华国, 马贤锋, 赵伟, 刘建伟, 赵振业. 高性能金属铝的制备、微观结构及其热稳定性[J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[5] 关庆丰, 张远望, 孙潇, 张超仁, 吕鹏, 张从林. 强流脉冲电子束作用下铝钨合金的表面合金化[J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[6] 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[7] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[8] 张学广, 刘纯国, 郑愿, 江仲海, 李湘吉. 基于延性损伤和剪切损伤的铝合金成形极限预测[J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[9] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[10] 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[11] 张志强, 贾晓飞, 袁秋菊. 基于Yoshida-Uemori模型的TRIP800高强钢回弹分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1852-1856.
[12] 张志强, 贾晓飞, 赵勇, 李湘吉. 高强度硼钢淬火界面热交换系数的实验与模拟[J]. 吉林大学学报(工学版), 2015, 45(4): 1195-1199.
[13] 关庆丰, 李艳, 侯秀丽, 杨盛志, 王晓彤. 固溶态Mg-Gd-Y-Nd合金强流脉冲电子束表面改性[J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
[14] 马云海, 尚文博, 范雪莹, 高知辉, 佟金, 闫志峰, 常志勇. 仿骨β相磷酸三钙多孔生物陶瓷制备及降解[J]. 吉林大学学报(工学版), 2015, 45(4): 1367-1374.
[15] 段兴旺,刘建生. 316LN钢高温塑性及其断口特征[J]. 吉林大学学报(工学版), 2015, 45(2): 494-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!