吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1851-1857.doi: 10.13229/j.cnki.jdxbgxb201606013
严利鑫1, 2, 3, 黄珍4, 朱敦尧1, 2, 陈志军1, 2, 冉斌3
YAN Li-xin1, 2, 3, HUANG Zhen4, ZHU Dun-yao1, 2, CHEN Zhi-jun1, 2, RAN Bin3
摘要: 为了实现对驾驶行为险态的有效辨识,以实时采集的多源信息为依据,通过融合驾驶人心率变化率及违法行为将驾驶行为险态分为4级。采用马尔科夫毯特征抽取算法提取出速度、纵向加速度、前轮转角变化率、车道偏离量以及车辆位置作为构建驾驶行为险态辨识的特征集,基于隐朴素贝叶斯(HNB)构建驾驶行为险态辨识模型。十折交叉验证结果表明,该模型的辨识精度(90.6%)比朴素贝叶斯(NB)、贝叶斯网络(BN)及径向基函数(RBF)神经网络分别提高14.1%、13.9%和13%。此外,ROC曲线验证结果表明该模型对不同险态等级都具有良好的预测效果。
中图分类号:
[1] 石京,肖遥. 驾驶心理对交通安全的影响[J]. 交通信息与安全,2014,32(5):65-70. Shi Jing, Xiao Yao. Effects of driver's phycology on traffic safety[J]. Journal of Transport Information and Safety,2014, 32(5):65-70. [2] 严新平,张晖,吴超仲, 等. 道路交通驾驶行为研究进展及展望[J]. 交通信息与安全,2013,31(1):45-50. Yan Xin-ping, Zhang Hui, Wu Chao-zhong, et al. Research progress and prospect of road traffic driving behavior[J]. Journal of Transport Information and Safety,2013,31(1):45-50. [3] Siordia O S, de Diego I M, Conde C, et al. Combining traffic safety knowledge for driving risk detection[C]∥IEEE Conference on Intelligent Transportation Systems, Washington, DC, USA, 2011:564-569. [4] de Diego I M, Siordia O S, Conde C, et al. Optimal experts' knowledge selection for intelligent driving risk detection systems[C]∥IEEE Intelligent Vehicles Symposium, Spain,2012:896-901. [5] de Diego I M, Siordia O S, Crespo R, et al. Analysis of hands activity for automatic driving risk detection[J]. Transportation Research Part C: Emerging Technologies,2013,26:380-395. [6] 马国忠,李燕,郭孜政,等. 驾驶行为险态辨识方法[J]. 公路交通科技,2013,30(7):113-118. Ma Guo-zhong, Li Yan, Guo Zi-zheng, et al. A method for identifying risk status of driving behavior[J]. Journal of Highway and Transportation Research and Development,2013,30(7):113-118. [7] Wu Zhi-zhou, Chen Tian-zi, Zhang Jian-qiao. Reckless status identification of bus driving behavior based on hidden Markov model[C]∥Eighth China Intelligent Transport Annual Meeting,Hefei,China,2013:178-186. [8] 郭孜政. 驾驶行为险态辨识理论与方法[D]. 成都:西南交通大学交通运输与物流学院,2009. Guo Zi-zheng. Theories and methods on driving risk status identification[D]. Chengdu: School of Transportation and Logistics, Southwest Jiaotong University,2009. [9] 郭孜政,陈崇双,闫伟,等. 驾驶危险感知评估方法[J]. 吉林大学学报:工学版,2012,42(1):46-50. Guo Zi-zheng. Chen Chong-shuang, Yan Wei, et al. Assessment method for driving threat perception[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(1):46-50. [10] 陈雪梅,田赓,苗一松. 面向智能驾驶行为的机器学习[J]. 道路交通与安全,2014,14(6):60-64. Chen Xue-mei, Tian Geng, Miao Yi-song. A survey on machine learning algorithms for intelligent driving behavior[J]. Road Transportation and Safety,2014,14(6):60-64. [11] 吴晓端,吴志周. 汽车驾驶模拟器在交通安全中的应用综述[J]. 交通信息与安全,2015,33(2):10-19. Wu Xiao-duan, Wu Zhi-zhou. A review of vehicle driving simulator application on traffic safety[J]. Journal of Transport Information and Safety,2015,33(2):10-19. [12] Yan Li-xin, Zhu Dun-yao, Wu Chao-zhong, et al. Ranking and causal relationship analysis of incentive factors of driving anger: a case study from an on-road experiment in china[C]∥14th COTA International Conference of Transportation Professionals, Changsha, China,2014: 2534-2547. [13] 秦大同,詹森,漆正刚,等. 基于K-均值聚类算法的行驶工况构建方法[J]. 吉林大学学报:工学版,2016,46(2):383-389. Qin Da-tong, Zhan Sen, Qi Zheng-gang, et al. Driving cycle construction using K-means clustering method[J]. Journal of Jilin University Engineering and Technology (Engineering and Technology Edition),2016,46(2):383-389. [14] Peña J M, Nilsson R, Björkegren J, et al. Towards scalable and data efficient learning of Markov boundaries[J]. International Journal of Approximate Reasoning,2007,45(2):211-232. [15] Zhuang Hong-lei, Tang Jie, Tang Wen-bin, et al. Actively learning to infer social ties[J]. Data Mining and Knowledge Discovery,2012,25(2):270-297. [16] Hsu W H. Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning[J]. Information Sciences,2004,163(1-3):105-120. |
[1] | 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711. |
[2] | 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044. |
[3] | 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054. |
[4] | 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719. |
[5] | 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465. |
[6] | 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126. |
[7] | 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136. |
[8] | 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147. |
[9] | 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759. |
[10] | 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464. |
[11] | 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471. |
[12] | 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093. |
[13] | 蔡氧, 付伟, 陶泽峰, 陈康为. 基于扩展有限元模型的土工布防荷载型反射裂缝影响分析[J]. 吉林大学学报(工学版), 2017, 47(3): 765-770. |
[14] | 王海玮, 温惠英, 刘敏. 夜间环境驾驶员精神负荷的生理特性评估与实验[J]. 吉林大学学报(工学版), 2017, 47(2): 420-428. |
[15] | 刘寒冰, 张互助, 王静. 失水干燥对路基压实黏质土抗剪强度特性的影响[J]. 吉林大学学报(工学版), 2017, 47(2): 446-451. |
|