吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1858-1866.doi: 10.13229/j.cnki.jdxbgxb201606014

• • 上一篇    下一篇

异形桥梁损伤识别方法及参数影响分析

赵云鹏1, 2, 于天来1, 焦峪波3, 宫亚峰3, 宋刚3   

  1. 1.东北林业大学 土木工程学院,哈尔滨 150040;
    2.辽宁省交通规划设计院,沈阳 110166;
    3.吉林大学 交通学院,长春 130022
  • 收稿日期:2015-10-28 出版日期:2016-11-20 发布日期:2016-11-20
  • 通讯作者: 焦峪波(1986-),男,讲师,博士.研究方向:桥梁智能诊断.E-mail:jiaoyb@jlu.edu.cn
  • 作者简介:赵云鹏(1981-),男,高级工程师,博士研究生.研究方向:桥梁设计与检算.
  • 基金资助:
    国家自然科学基金项目(51408258); 中国博士后科学基金项目(2014M560237,2015T80305); 中央高校基本科研业务费专项资金项目(JCKY-QKJC06); 吉林省科技厅青年科研基金项目(20160520068JH)

Damage identification method and factor evaluation for irregular-shaped bridge

ZHAO Yun-peng1, 2, YU Tian-lai1, JIAO Yu-bo3, GONG Ya-feng3, SONG Gang3   

  1. 1.School of Civil Engineering, Northeast Forestry University, Harbin 150040, China;
    2.Traffic Planning and Design Institute of Liaoning Province, Shenyang 110166, China;
    3.College of Transportation, Jilin University, Changchun 130022, China
  • Received:2015-10-28 Online:2016-11-20 Published:2016-11-20

摘要: 针对现有异形桥梁结构损伤识别方法的局限性和参数影响的不确定性,本文首先详细分析了损伤程度、传感器数量和模态阶次等参数对损伤识别指标(振型差、模态曲率差、模态柔度差及其曲率)的影响效果,确定将模态柔度差曲率作为识别指标。其次,提出异形桥梁两阶段损伤识别方法,在采用模态柔度差曲率实现损伤定位基础上,基于遗传算法优化支持向量机对损伤程度进行准确识别。损伤识别结果验证了该方法的有效性和准确性。

关键词: 道路工程, 异形桥梁, 损伤识别, 模态柔度差曲率, 遗传算法, 支持向量机

Abstract: Traditional damage identification methods are difficult to accurately identify the damage location and extent of irregular-shaped bridge because of the complex structure of the bridge. To overcome the shortcoming of these damage identification methods and the uncertainty of factor influence, the factor effect on damage identification indicator is synthetically analyzed, and a novel damage identification approach for irregular-shaped bridge is proposed based on modal flexibility difference curvature and Support Vector Machine optimized by Genetic Algorithm (SVM-GA). First, the damage identification effect on the indicators (modal shape change, modal curvature difference, modal flexibility difference and curvature) is studied under the impacts of damage severity, number of sensors and modal orders. Second, the two stage damage identification method for irregular-shaped bridge is presented. On the basis of determining the damage location using modal flexibility difference curvature, the damage extent is forecasted and identified based on SVM-GA. Damage identification results demonstrate that the proposed method is feasible and accurate.

Key words: road engineering, irregular-shaped bridge, damage identification, modal flexibility difference curvature, genetic algorithm(GA), support vector machine(SVM)

中图分类号: 

  • U446
[1] 杨秋伟,刘济科. 工程结构损伤识别的柔度方法研究进展[J]. 振动与冲击,2011,30(12):147-153.
Yang Qiu-wei,Liu Ji-ke. Structural damage identification with flexibility changed:a review[J]. Journal of Vibration and Shock,2011,30(12):147-153.
[2] Chan T H T, Yu L, Tam H Y, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation[J]. Engineering Structures,2006,28(5):648-659.
[3] Xia Y, Hao H. Statistical damage identification of structures with frequency changes[J]. Journal of Sound and Vibration,2003,263(4):853-870.
[4] 曹晖,Michael I F. 基于模态柔度曲率的损伤检测方法[J]. 工程力学,2006,23(4):33-38.
Cao Hui, Michael I F. Nondestructive damage evaluation indicator based on modal flexibility curvature[J]. Engineering Mechanics,2006,23(4):33-38.
[5] Cao M,Qiao P. Novel Laplacian scheme and multiresolution modal curvatures for structural damage-identification[J]. Mechanical Systems and Signal Processing,2009,23(4):1223-1242.
[6] Jassim Z A, Ali N N, Mustapha F, et al. A review on the vibration analysis for a damage occurrence of a cantilever beam[J]. Engineering Failure Analysis,2013,31:442-461.
[7] Cao M, Radzieński M, Xu W, et al. Identification of multiple damage in beams based on robust curvature mode shapes[J]. Mechanical Systems and Signal Processing,2014,46(2):468-480.
[8] 张军,刘建勋,徐进,等. 结构损伤诊断的模态柔度差曲率法[J]. 工程力学,2011,28(12):112-118.
Zhang Jun, Liu Jian-xun, Xu Jin, et al. Structural damage detection based on change in curvature of flexibility[J]. Engineering Mechanics,2011,28(12):112-118.
[9] Guo H Y, Li Z L. Structural damage identification based on Bayesian theory and improved immune genetic algorithm[J]. Expert Systems with Applications,2012,39(7):6426-6434.
[10] 孙宗光,陈一飞,石健,等. 基于模型试验的悬索桥结构损伤识别研究[J]. 工程力学, 2014,31(6):132-138.
Sun Zong-guang,Chen Yi-fei,Shi Jian, et al. Modal test study on damage identification for suspension bridges[J]. Engineering Mechanics,2014,31(6):132-138.
[11] 刘寒冰,焦峪波,程永春,等. 基于模态曲率理论及神经网络的简支梁桥损伤识别[J]. 吉林大学学报:工学版,2011,41(4):963-967.
Liu Han-bing,Jiao Yu-bo,Cheng Yong-chun, et al. Damage identification for simply supported beam bridge based on modal curvature theory and neural network[J]. Journal of Jilin University (Engineering and Technology Edition),2011,41(4):963-967.
[12] 代琨,于宏毅,仇文博,等. 基于SVM的网络数据无监督特征选择算法[J]. 吉林大学学报:工学版,2015,45(2):576-583.
Dai Kun,Yu Hong-yi,Qiu Wen-bo, et al. Unsupervised feature selection algorithm based on support vector machine for network data[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(2):576-583.
[13] Lu P Z, Xie X,Shao C Y. Experimental study and numerical analysis of a composite bridge structure[J]. Construction and Building Materials, 2012,30:695-705.
[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 吴蔚楠,崔乃刚,郭继峰,赵杨杨. 多异构无人机任务规划的分布式一体化求解方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1827-1837.
[3] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[4] 焦玉玲, 张鹏, 田广东, 邢小翠, 邹连慧. 基于多种群遗传算法的自动化立体库货位优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1398-1404.
[5] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[6] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[7] 李启良, 曹冠宁, 李璇, 杨志刚, 钟立元. 三厢轿车多参数气动优化[J]. 吉林大学学报(工学版), 2018, 48(3): 670-676.
[8] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[9] 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[10] 蔡振闹, 吕信恩, 陈慧灵. 基于反向细菌优化支持向量机的躯体化障碍预测模型[J]. 吉林大学学报(工学版), 2018, 48(3): 936-942.
[11] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[12] 孙文, 王庆年, 王军年. 基于横摆力矩控制的电动轮汽车转弯节能控制[J]. 吉林大学学报(工学版), 2018, 48(1): 11-19.
[13] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[14] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[15] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .