吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 301-307.doi: 10.13229/j.cnki.jdxbgxb201701044

• 论文 • 上一篇    下一篇

基于特征峰匹配的TOF-MS重叠谱峰分离方法

包泽民1, 刘光达1, 龙涛2, 邱春玲1, 田地1, 刘敦一2   

  1. 1.吉林大学 仪器科学与电气工程学院,长春 130061;
    2.中国地质科学院地质研究所 北京离子探针中心,北京 100037
  • 收稿日期:2015-12-23 出版日期:2017-01-20 发布日期:2017-01-20
  • 通讯作者: 龙涛(1984-),男,副研究员.研究方向:质谱仪器研制与应用.E-mail:longtao@bjshrimp.cn
  • 作者简介:包泽民(1985-),男,博士研究生.研究方向:分析仪器研制.E-mail:baozm12@mails.jlu.edu.cn
  • 基金资助:
    国家重大科学仪器设备开发专项项目(2011YQ050069,2011YQ05006906).

TOF-MS overlapped peak separation approach based on characteristic peak matching

BAO Ze-min1, LIU Guang-da1, LONG Tao2, QIU Chun-ling1, TIAN Di1, LIU Dun-yi2   

  1. 1.College of Instrumentation & Electrical Engineering, Jilin University,Changchun 130061,China;;
    2.Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2015-12-23 Online:2017-01-20 Published:2017-01-20

摘要: 针对飞行时间质谱仪(TOF-MS)定量分析过程中存在的同质峰干扰问题,提出了一种谱峰分离的处理方法。首先,根据“TOF-MS质量数相近的谱峰,其形态也相似”的特点,通过高斯曲线与质谱数据的相关运算寻找单峰位置,再按照幅度的“择高弃低”原则选择个体单峰,对其进行叠加和归一化处理得到特征峰。然后,由特征峰构建功率谱密度函数,按照最小原则确定重叠峰位置及幅度,从而达到谱峰分离的目的。最后,将本文方法分别与Gaussin匹配法和Lorentzian匹配法进行了仿真比较,当处理对称峰(对称系数δ=0.2)时,这3种方法的效果基本一致,但当处理非对称峰(δ=1.6)时,本文方法的效果明显优于后两者。应用实例结果表明,采用本文方法对实测29Si和28Si1H重叠谱峰进行分离,可使分离度由0.371提升至0.519,提高39.9%,且能保持谱峰原始形态信息。

关键词: 信息处理技术, 飞行时间质谱仪, 特征峰匹配, 谱峰分离

Abstract: In order to solve the mutual interference problem among homogeneous peaks in Time-of-flight and Mass Spectrometry (TOF-MS) quantitative analysis, a spectral peak separation method was presented. First, according to the technical characteristics that those spectral peaks with close mass number have close shape, the peak positions were determined by the correlation algorithm between Gaussian curve and the original mass spectrum. Then, the individual single peaks were selected by the principle of “high amplitudes kept and low amplitudes left”. The characteristic peak was obtained by stacking and normalization of the single peaks. The power spectral density function was constructed by the characteristic peak, and positions and amplitudes of the overlapped peak were determined in accordance with the minimum principle, thus achieving the overlapped peak separation. The result obtained by the above characteristic peak matching method was compared with the results of Gaussian matching method and Lorentzian matching method respectively. When dealing with symmetric peaks with δ= 0.2, these results are basically consistent. However, when dealing with asymmetric peaks with δ= 1.6, the effect of characteristic peak matching method is much better than the other two methods. Experimental results show that the presented method can be used to separate the 29Si and 28Si1H overlapped peak, the separation resolution is improved from 0.371 to 0.519, while the original shape information of the peeks is maintained.

Key words: information processing, time-of-flight mass spectrometry(TOF-MS), characteristic peak, peak separation

中图分类号: 

  • TH843
[1] Benninghoven A. Chemical analysis of inorganic and organic surfaces and thin films by static time-of-flight secondary ion mass spectrometry (TOF-SIMS)[J]. Angewandte Chemie International Edition in English,1994,33(10):1023-1043.
[2] Stephan T. TOF-SIMS in cosmochemistry[J]. Planetary and Space Science , 2001,49(9):859-906.
[3] Tellez H,Druce J,Hong J E,et al.Accurate and precise measurement of oxygen isotopic fraction and diffusion profiles by selective attenuation of secondary ions(SASI)[J]. Analytical Chemistry,2015,87(5):2907-2915.
[4] Yang C, He Z Y, Yu W C, Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis[J]. BMC Bioinformatics,2009, 10:1-13.
[5] Malyarenko D I, Cooke W E, Bunai C L, et al. Automated assignment of ionization states in broad-mass matrix-assisted laser desorption/ionization spectra of protein mixtures[J]. Rapid Communications in Mass Spectrometry, 2010, 24(1):138-146.
[6] Zhang Z M,Tong X,Peng Y,et al. Multiscale peak detection in wavelet space[J]. Analyst,2015, 140(23) :7955-7964.
[7] Oleg N P, Oleksandr M B. The peak shape model for magnetic sector and time-of-flight mass spectrometers[J]. International Journal of Mass Spectrometry,2010,295(1-2):1-6.
[8] Tracy M B,Chen H,Weaver D M,et al. Precision enhancement of MALDI-TOF MS using high resolution peak detection and label-free alignment[J]. Proteomics, 2008, 8(8):1530-1538.
[9] Abel M L, Shimizu K,Holliman M, et al. Peak-fitting of high resolution TOF-SIMS spectra: a preliminary study[J]. Surface And Interface Analysis, 2009, 41(4): 265-268.
[10] Eric F S,Nestor R,Richard D S. High mass measurement accuracy determination for proteomics using multivariate regression fitting: application to electrospray ionization time-of-flight mass spectrometry[J]. Analytical Chemistry,2003,75(3):460-468.
[11] Martin K, Johan S, Anders B,et al. Improved method for peak picking in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Rapid Communication in Mass Spectrometry,2004,18(11):1208-1212.
[12] Coombes K R, Koomen J M ,Baggerly K A,et al. Understanding the characteristics of mass spectrometry data through the use of simulation[J]. Cancer Informatics, 2005,1(1): 41-52.
[13] 李宝强,李翠萍,黄启斌,等. 基于小波变换的便携式质谱重叠峰解析方法研究[J]. 质谱学报,2015,36(3):199-205.
Li Bao-qiang,Li Cui-ping,Huang Qi-bin,et al. Research of portable mass spectrometer overlapped peak resolution method based on wavelet transform[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(3): 199-205.
[14] Savage P S, Armytage R M G,Georg R B,et al. High temperature silicon isotope geochemistry[J]. Lithos, 2014,190-191: 500-519.
[15] Chmeleff J,Horn I,Steinhoefel G,et al. In situ determination of precise stable Si isotope ratios by UV-femtosecond laser ablation high-resolution multi-collector ICP-MS[J]. Chemical Geology,2008,249(1/2): 155-166.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!