吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 459-467.doi: 10.13229/j.cnki.jdxbgxb201702016
王志臣1, 2, 郭乃胜3, 赵颖华3, 陈忠达2
WANG Zhi-chen1, 2, GUO Nai-sheng3, ZHAO Ying-hua3, CHEN Zhong-da2
摘要: 将沥青胶浆视为由沥青基体和矿粉夹杂相组成的两相复合材料,基于简化的Christensen-Lo模型有效模量解答,应用广义Maxwell模型和黏弹性对应原理,建立了沥青胶浆动态剪切模量预测的细观力学模型,采用不同种类沥青胶浆的动态剪切流变仪(DSR)试验对预测值进行了校正,并分析了模型参数对预测值的影响。结果表明,矿粉体积分数为10%时,预测值与试验值较为一致,但在20%和30%体积分数下,预测值小于试验值;预测偏差主要归因于较高体积分数下矿粉颗粒间的相互作用,采用逾渗理论对提出的预测模型进行修正,据此得到的预测值与试验值较为吻合;矿粉弹性模量对预测值的影响较小,增大矿粉体积分数可以有效提高预测值。
中图分类号:
[1] 李华. 沥青胶浆粘弹性研究[D]. 西安: 长安大学公路学院, 2006. Li Hua. A study of viscoelastic properties of asphalt mortar[D]. Xi'an: College of Highway, Chang'an University, 2006. [2] 付海英, 谢雷东, 虞鸣, 等. SBS改性沥青动态剪切流变性能评价的研究[J]. 公路交通科技, 2005, 22 (12): 9-12. Fu Hai-ying, Xie Lei-dong, Yu Ming, et al. Dynamic shear rheologic properties of SBS-g-M modified asphalt[J]. Journal of Highway and Transportation Research and Development, 2005, 22(12): 9-12. [3] Bari J, Witczak M W. New predicitive for the viscosity and complex shear modulus of Asphalt binders for use with the mechanistic-empirical pavement design guide[C]∥TRB, Washington D C, 2007. [4] Christensen D W, Pellinen T, Bonaquist R F. Hirsch model for estimating the modulus of asphalt concrete[J]. Journal of Association of Asphalt Paving Technologists, 2003,72: 97-121. [5] Druta C. A micromechanical approach for predicting the complex shear modulus and accumulated shear strain of asphalt mixtures from binder and mastic[D]. Baton Rouge: College of Agricultural and Mechanical Louisiana State University , 2006. [6] Li G Q, Li Y Q, Metcalf J B, et al. Elastic modulus prediction of asphalt concrete[J]. Journal of Materials in Civil Engineering,1999, 11(3): 236-241. [7] Li Y Q, Metcalf J B. Two-step approach to prediction of asphalt mixtures modulus from two-phase micromechanical models[J]. J Mater Civ Eng, 2005, 17(4): 407-415. [8] 朱兴一, 黄志义, 陈伟球. 基于复合材料细观力学模型的沥青混合料弹性模量预测[J]. 中国公路学报, 2010, 23(3): 29-33. Zhu Xing-yi, Huang Zhi-yi, Chen Wei-qiu. Elastic modulus prediction of asphalt concrete based on composite material micromechanics model[J]. China Journal of Highway and Transport, 2010, 23 (3): 29-33. [9] Shu X, Huang B S. Dynamic modulus prediction of HMA mixtures based on the viscoelastic micromechanical model[J]. Journal of Materials in Civil Engineering, 2008, 20(8): 530-538. [10] 张裕卿, 黄晓明. 基于微观力学的沥青混合料黏弹性预测[J]. 吉林大学学报:工学版, 2010, 40 (1): 52-57. Zhang Yu-qing, Huang Xiao-ming. Viscoelasticity prediction of asphalt mixture based on micromechanics[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40 (1): 52-57. [11] 郭乃胜, 赵颖华. 基于细观力学的沥青混合料动态模量预测[J]. 工程力学, 2012, 29 (10): 13-19. Guo Nai-sheng, Zhao Ying-hua. Dynamic modulus prediction of asphalt mixtures based on micromechanics[J]. Engineering Mechanics, 2012, 29 (10): 13-19. [12] Luo R, Lytton R L. Self-consistent micromechanics models of an asphalt mixture[J]. Journal of Materials in Civil Engineering, 2011, 23 (1): 49-55. [13] Zhu X Y, Wang X F, Yu Y. Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect[J]. International Journal of Engineering Science, 2014,76:34-46. [14] Shashidhar N, Shenoy A. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics[J]. Mechanics of Materials, 2002, 34(10):657-669. [15] Aigner E, Lackner R, Pichler C. Multiscale prediction of viscoelastic properties of asphalt concrete[J].Journal of Materials in Civil Engineering, 2009, 21(12): 771-780. [16] Pichler C, Lackner R. Upscaling of viscoelastic of highly-filled composites: Investigation of matrix- inclusion-type morphologies with power-law viscoelastic material response[J]. Composites Science and Technology, 2009, 69:2410-2420. [17] Christensen R M, Lo K H. Solution for effective shear properties in three phase sphere and cylinder models[J].Journal of the Mechanics and Physies of Solids, 1979,27: 315-330. [18] Park S W, Schapery R A. Methods of interconversion between linear viscoelastic material functions. Part I-a numerical method based on Prony series[J]. International Journal of Solids and Structures, 1999,36: 1653-1675. [19] 赵延庆, 吴剑, 文健. 沥青混合料动态模量及其主曲线的确定与分析[J]. 公路, 2006,8: 163-166. Zhao Yan-qing, Wu Jian, Wen Jian. Determination and analysis of dynamic modulus of asphalt mixture and its master curve[J]. Highway, 2006,8: 163-166. [20] Schapery R A. A simple collocation method for fitting viscoelastic models to experimental data[R]. GALCIT SM61-23, California Institute of Technology, Pasadena, CA, 1962: 1-13. [21] Hsu W Y, Giri M R, Ikeda R M. Percolation transition and elastic properties of block copolymers[J]. Macromolecules, 1982,15:1210-1212. [22] Stauffer D, Aharony A. Introduction to Percolation Theory[M]. 2nd ed. London: Taylor and Francis, 1992. [23] Alberola N D, Mele P. Viscoelasticity of polymers filled by rigid or soft particles[J]. Polym Compos, 1996,17:751-759. |
[1] | 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711. |
[2] | 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044. |
[3] | 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054. |
[4] | 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719. |
[5] | 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465. |
[6] | 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126. |
[7] | 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136. |
[8] | 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147. |
[9] | 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759. |
[10] | 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464. |
[11] | 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471. |
[12] | 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093. |
[13] | 蔡氧, 付伟, 陶泽峰, 陈康为. 基于扩展有限元模型的土工布防荷载型反射裂缝影响分析[J]. 吉林大学学报(工学版), 2017, 47(3): 765-770. |
[14] | 刘寒冰, 张互助, 王静. 失水干燥对路基压实黏质土抗剪强度特性的影响[J]. 吉林大学学报(工学版), 2017, 47(2): 446-451. |
[15] | 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458. |
|