吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 601-608.doi: 10.13229/j.cnki.jdxbgxb201702035
周保余1, 赵宏伟1, 肖杨2, 臧雪柏1
ZHOU Bao-yu1, ZHAO Hong-wei1, XIAO Yang2, ZANG Xue-bai1
摘要: 使用传统的特征描述方法SIFT在单一尺度上描述图像特征会丢失一部分重要信息,影响图像的正确匹配结果。为了解决这一问题,本文在多尺度模糊空间内提取特征描述子。信息熵从图像显著性角度估计特征点及其周围的信息,能获得更多的图像关键内容,本文提出了基于局部熵的图像特征描述方法。首先,在高斯差分空间(DOG)内计算特征点的多层SIFT描述子,同时统计特征点在每层尺度上的局部熵,计算特征点在每层的熵值占所有层熵总和的百分比,利用所得百分比与每层描述子做乘积;然后,累加所有层描述子;最后,使用平方根算法得到最终局部熵特征描述子。通过与其他描述子的对比实验结果可知,本文提出的局部图像描述方法在精确-召回率、平均均匀准确度和正确匹配数方面具有强鲁棒性。
中图分类号:
[1] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, 2005:886-893. [2] Redondi A, Cesana M, Tagliasacchi M. Low bitrate coding schemes for local image descriptors[C]∥IEEE International Workshop on Multimedia Signal Processing, Canada, 2012:124-129. [3] Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in videos[C]∥IEEE International Conference on Computer Vision, Beijing, 2003:1470. [4] Zhao H, Zhou B, Liu P, et al. Modulating a local shape descriptor through biologically inspired color feature[J]. Journal of Bionic Engineering, 2014,11(2): 311-321. [5] Lowe D G. Object recognition from local scale-invariant features[C]∥IEEE International Conference on Computer Vision,Toronto, 1999:91-110. [6] Bay H, Ess A, Tuytelaars T. Speeded-up robust features (SURF)[J]. Computer Vision & Image Understanding, 2008, 110(3): 346-359. [7] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [8] Mikolajczyk K, Schmid C. An affine invariant interest point detector[J]. European Conference on Computer Vision, 2002, 1(10):128-142. [9] Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630. [10] Wang Z, Fan B, Wu F. Local intensity order pattern for feature description[J]. IEEE International Conference on Computer Vision,2011, 23(5):603-610. [11] Tola E, Lepetit V, Fua P. Daisy: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-30. [12] Hassner T, Mayzels V, Zelnik-Manor L. On SIFTs and their scales[J]. IEEE Conference on Computer Vision & Pattern Recognition, 2012, 157(10):1522-1528. [13] Wang Z, Fan B, Wu F. Affine subspace representation for feature description[R]. Zurich:Lecture Notes in Computer Science,2014. [14] Dong J, Soatto S. Domain-size pooling in local descriptors: DSP-SIFT[J]. Eprint Arxiv, 2015:5097-5106. [15] Yang T Y, Lin Y Y, Chuang Y Y. Accumulated stability voting: a robust descriptor from descriptors of multiple scales[C]∥Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016:327-335. [16] Shannon C E. A mathematical theory of communication[J]. ACM Sigmobile Computing and Communications Review, 2001, 5(1): 3-55. [17] Kadir T, Brady M. Saliency, scale and image description[J]. International Journal of Computer Vision, 2001, 45(2): 83-105. [18] Kapur J N, Sahoo P K, Wong A K. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285. [19] Chen X, Zhao H, Liu P. Automatic salient object detection via maximum entropy estimation[J]. Optics Letters, 2013, 38(10): 1727-1729. [20] Lindeberg T. On scale selection for differential operators[C]∥Proc Scandinavian Conference on Image Analysis, Tromssa, Norway, 1993:317-348. [21] Lindeberg T. Junction detection with automatic selection of detection scales and localization scales[C]∥IEEE International Conference,Austin,2012:924-928. [22] Tuzel O, Porikli F, Meer P. Region covariance: a fast descriptor for detection and classification[C]∥Computer Vision - ECCV 2006, European Conference on Computer Vision, Graz, Austria, 2006:589-600. [23] Lindeberg T. Feature detection with automatic scale selection[J]. International Journal of Computer Vision, 1998, 30(2): 79-116. [24] Yang Lei,Ren Yan-yun, Zhang Wen-qiang.3D depth image analysis for indoor fall detection of elderly people[J].Digital Communications & Networks ,2016,2(1):24-34 [25] Wu Wen-qi ,WangXin-gang , Huang Guan,et al.Automatic gear sorting system based on monocular vision[J].Digital Communications & Networks ,2015,1(4):284-291 [26] Xu Han-song ,Hua Kun,Wang Hong-gang.Adaptive FEC coding and cooperative relayed wireless image transmission[J].Digital Communications & Networks ,2015,1(3):213-221 [27] Arandjelovic ' R, Zisserman A. Three things everyone should know to improve object retrieval[J].Computer Vision & Pattern Recognition, 2012, 157(10):2911-2918. [28] Hua G, Brown M, Winder S. Discriminant Embedding for Local Image Descriptors[C]∥IEEE 11th International Conference on Computer Vision, Brazil, 2007:1-8. [29] Vedaldi A, Fulkerson B. Vlfeat: an open and portable library of computer vision algorithms[C]∥International Conference on Multimedea,New York,2010:1469-1472. |
[1] | 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850. |
[2] | 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858. |
[3] | 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866. |
[4] | 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872. |
[5] | 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878. |
[6] | 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570. |
[7] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
[8] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[9] | 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613. |
[10] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[11] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[12] | 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[13] | 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
[14] | 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
[15] | 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253. |
|