吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 601-608.doi: 10.13229/j.cnki.jdxbgxb201702035

• • 上一篇    下一篇

基于局部熵的图像特征描述方法

周保余1, 赵宏伟1, 肖杨2, 臧雪柏1   

  1. 1.吉林大学 计算机科学与技术学院,长春 130012;
    2.吉林交通职业技术学院 电子信息学院,长春 130012
  • 收稿日期:2015-12-22 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 臧雪柏(1963-),女,研究员, 博士.研究方向:智能信息系统与嵌入式技术.E-mail:1047853240@qq.com
  • 作者简介:周保余(1987-),女,博士研究生.研究方向:智能信息系统.E-mail:zhoubaoyu7@163.com
  • 基金资助:
    国家自然科学基金项目(61101155); 吉林省发展和改革委员会产业创新专项项目(2016C035).

Image feature description method based on local entropy

ZHOU Bao-yu1, ZHAO Hong-wei1, XIAO Yang2, ZANG Xue-bai1   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2.College of Electronic Information,Jilin Communications Polytechnic, Changchun 130012, China
  • Received:2015-12-22 Online:2017-03-20 Published:2017-03-20

摘要: 使用传统的特征描述方法SIFT在单一尺度上描述图像特征会丢失一部分重要信息,影响图像的正确匹配结果。为了解决这一问题,本文在多尺度模糊空间内提取特征描述子。信息熵从图像显著性角度估计特征点及其周围的信息,能获得更多的图像关键内容,本文提出了基于局部熵的图像特征描述方法。首先,在高斯差分空间(DOG)内计算特征点的多层SIFT描述子,同时统计特征点在每层尺度上的局部熵,计算特征点在每层的熵值占所有层熵总和的百分比,利用所得百分比与每层描述子做乘积;然后,累加所有层描述子;最后,使用平方根算法得到最终局部熵特征描述子。通过与其他描述子的对比实验结果可知,本文提出的局部图像描述方法在精确-召回率、平均均匀准确度和正确匹配数方面具有强鲁棒性。

关键词: 计算机应用, 图像特征检测, 图像特征描述, 局部熵

Abstract: The traditional model, local scale-invariant features, does not capture some parts of the important information of an image, which will lead to bad matching result. In order to address this problem, extracting feature information from different scales in blurring space is better than the classic algorithm. A local entropy method can estimate interesting point information from its surrounding, which can obtain more image content. This paper provides a new image feature description based on local entropy. First, the orient histograms from different scales within different Gaussians space are computed, and each local entropy value is estimated from each scale level. Then, all of the descriptors of the same interesting point are fussed based on the ratio of each entropy to the whole local entropy value of the same feature in different scale levels. Experiment results demonstrate that, compared with order out-of-state local descriptor, the two descriptors provided in this paper have strong robust under different conditions.

Key words: computer application, image feature detection, image feature description, local entropy

中图分类号: 

  • TP391
[1] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, 2005:886-893.
[2] Redondi A, Cesana M, Tagliasacchi M. Low bitrate coding schemes for local image descriptors[C]∥IEEE International Workshop on Multimedia Signal Processing, Canada, 2012:124-129.
[3] Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in videos[C]∥IEEE International Conference on Computer Vision, Beijing, 2003:1470.
[4] Zhao H, Zhou B, Liu P, et al. Modulating a local shape descriptor through biologically inspired color feature[J]. Journal of Bionic Engineering, 2014,11(2): 311-321.
[5] Lowe D G. Object recognition from local scale-invariant features[C]∥IEEE International Conference on Computer Vision,Toronto, 1999:91-110.
[6] Bay H, Ess A, Tuytelaars T. Speeded-up robust features (SURF)[J]. Computer Vision & Image Understanding, 2008, 110(3): 346-359.
[7] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[8] Mikolajczyk K, Schmid C. An affine invariant interest point detector[J]. European Conference on Computer Vision, 2002, 1(10):128-142.
[9] Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
[10] Wang Z, Fan B, Wu F. Local intensity order pattern for feature description[J]. IEEE International Conference on Computer Vision,2011, 23(5):603-610.
[11] Tola E, Lepetit V, Fua P. Daisy: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-30.
[12] Hassner T, Mayzels V, Zelnik-Manor L. On SIFTs and their scales[J]. IEEE Conference on Computer Vision & Pattern Recognition, 2012, 157(10):1522-1528.
[13] Wang Z, Fan B, Wu F. Affine subspace representation for feature description[R]. Zurich:Lecture Notes in Computer Science,2014.
[14] Dong J, Soatto S. Domain-size pooling in local descriptors: DSP-SIFT[J]. Eprint Arxiv, 2015:5097-5106.
[15] Yang T Y, Lin Y Y, Chuang Y Y. Accumulated stability voting: a robust descriptor from descriptors of multiple scales[C]∥Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016:327-335.
[16] Shannon C E. A mathematical theory of communication[J]. ACM Sigmobile Computing and Communications Review, 2001, 5(1): 3-55.
[17] Kadir T, Brady M. Saliency, scale and image description[J]. International Journal of Computer Vision, 2001, 45(2): 83-105.
[18] Kapur J N, Sahoo P K, Wong A K. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285.
[19] Chen X, Zhao H, Liu P. Automatic salient object detection via maximum entropy estimation[J]. Optics Letters, 2013, 38(10): 1727-1729.
[20] Lindeberg T. On scale selection for differential operators[C]∥Proc Scandinavian Conference on Image Analysis, Tromssa, Norway, 1993:317-348.
[21] Lindeberg T. Junction detection with automatic selection of detection scales and localization scales[C]∥IEEE International Conference,Austin,2012:924-928.
[22] Tuzel O, Porikli F, Meer P. Region covariance: a fast descriptor for detection and classification[C]∥Computer Vision - ECCV 2006, European Conference on Computer Vision, Graz, Austria, 2006:589-600.
[23] Lindeberg T. Feature detection with automatic scale selection[J]. International Journal of Computer Vision, 1998, 30(2): 79-116.
[24] Yang Lei,Ren Yan-yun, Zhang Wen-qiang.3D depth image analysis for indoor fall detection of elderly people[J].Digital Communications & Networks ,2016,2(1):24-34
[25] Wu Wen-qi ,WangXin-gang , Huang Guan,et al.Automatic gear sorting system based on monocular vision[J].Digital Communications & Networks ,2015,1(4):284-291
[26] Xu Han-song ,Hua Kun,Wang Hong-gang.Adaptive FEC coding and cooperative relayed wireless image transmission[J].Digital Communications & Networks ,2015,1(3):213-221
[27] Arandjelovic ' R, Zisserman A. Three things everyone should know to improve object retrieval[J].Computer Vision & Pattern Recognition, 2012, 157(10):2911-2918.
[28] Hua G, Brown M, Winder S. Discriminant Embedding for Local Image Descriptors[C]∥IEEE 11th International Conference on Computer Vision, Brazil, 2007:1-8.
[29] Vedaldi A, Fulkerson B. Vlfeat: an open and portable library of computer vision algorithms[C]∥International Conference on Multimedea,New York,2010:1469-1472.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张霖, 赵宏伟, 杨倚寒, 马智超, 黄虎, 马志超. 单层石墨烯薄膜材料纳米压痕过程的分子动力学解析[J]. 吉林大学学报(工学版), 2013, 43(06): 1558 -1565 .
[2] 史文库, 刘国政, 宋海生, 陈志勇, 张宝. 纯电动客车振动噪声特性[J]. 吉林大学学报(工学版), 2018, 48(2): 373 -379 .