吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 615-623.doi: 10.13229/j.cnki.jdxbgxb201702037

• 论文 • 上一篇    下一篇

保证全局收敛的随机粒子群新算法

孙亮, 徐海浪, 葛宏伟   

  1. 大连理工大学 计算机科学与技术学院,辽宁 大连 116023
  • 收稿日期:2015-12-03 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 葛宏伟(1978-),男,副教授,博士.研究方向:群智计算,机器学习,深度学习,智能交通及车联网技术.E-mail:hwge@dlut.edu.cn
  • 作者简介:孙亮(1981-),男,在站博士后.研究方向:机器学习,群智计算,智能优化与仿真.E-mail:liangsun@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(61572104, 61103146, 61402076); 辽宁省科技厅博士启动项目(20141023); 中央高校基本科研业务费专项项目(DUT15QY26, DUT14QY06); 吉林大学符号计算与知识工程教育部重点实验室项目(93K172016K11).

Novel global convergence stochastic particle swarm optimizers

SUN Liang, XU Hai-lang, GE Hong-wei   

  1. College of Computer Science and Technology, Dalian University of Technology, Dalian 116023, China
  • Received:2015-12-03 Online:2017-03-20 Published:2017-03-20

摘要: 针对粒子群算法未成熟收敛的弱点进行了改进。给出了保证算法全局收敛的充分条件,即全局性假设条件和单调性假设条件,进而依据提出的全局收敛的充分条件,设计了具有柯西随机和高斯随机性质的粒子群算法。实验结果表明,本文提出的具有全局收敛性的粒子群算法能够有效地求解全局优化问题。

关键词: 计算机应用, 随机粒子群算法, 全局搜索, 局部搜索, 全局优化

Abstract: Particle Swarm Optimization (PSO) is a swarm intelligence based optimization algorithm. It is simple in concept, easy in implementation and fast in searching. This paper aims at improving the weak premature convergence shortcoming of traditional PSOs. Two sufficient conditions, i.e. global condition and local condition, which guarantee PSO converging to the optimality region, are proposed and verified. Moreover, two PSO variants that have Cauchy stochastic character and Gaussian stochastic character are designed based on the proposed conditions. The experimental results show that the proposed global convergent PSOs can solve the optimization problems effectively.

Key words: computer application, stochastic particle swarm optimization, global search, local search, global optimization

中图分类号: 

  • TP391
[1] 王凌. 智能优化算法及其应用[M]. 北京: 清华大学出版社, 2001.
[2] Kanagaraj G, Ponnambalam S G, Jawahar N. An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization[J]. Engineering Optimization, 2014, 46(10): 1331-1351.
[3] Kiranyaz S, Pulkkinen J, Gabbouj M. Multi-dimensional particle swarm optimization in dynamic environments[J]. Expert Systems with Applications, 2011, 38(3): 2212-2223.
[4] 刘富, 刘惠影, 高雷, 等. 基于手指融合特征和粒子群优化的手形识别[J]. 光学精密工程, 2015, 23(6): 1774-1782.
Liu Fu, Liu Hui-ying, Gao Lei, et al. Hand shape recognition based on fusion features of fingers and particle swarm optimization[J]. Optics and Precision Engineering, 2015, 23(6): 1774-1782.
[5] 刘得军. 基于粒子群算法的6-DOF并联坐标测量机测量建模[J]. 光学精密工程,2008,16(1):76-81.
Liu De-jun. Measurement modeling for 6-DOF parallel-link coordinate measuring machinebased on particle swarm optimization[J]. Optics and Precision Engineering, 2008,16(1):76-81.
[6] 陶新民,刘福荣,刘玉,等. 一种多尺度协同变异的粒子群优化算法[J]. 软件学报,2012,23(7): 1805-1815.
Tao Xin-min, Liu Fu-rong, Liu Yu,et al. Multi-scale cooperative mutation particle swarm optimizationalgorithm[J]. Journal of Software, 2012, 23(7):1805-1815.
[7] 邵鹏,吴志健,周炫余. 基于反向学习的粒子群算法对线性相位低通FIR滤波器的优化[J]. 吉林大学学报:工学版,2015,45(3): 907-912.
Shao Peng, Wu Zhi-jian, Zhou Xuan-yu. Particle swarm optimization algorithm based on opposite learning for linear phase low-pass FIR filter optimization[J]. Journal of Jilin University(Engineering and Technology Edition),2015,45(3): 907-912.
[8] Bergh F V D, Engelbrecht A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences,2006, 176(8):937-971.
[9] Solis F, Wets R. Minimization by random search techniques[J]. Mathematics of Operations Research,1981, 6(1):19-30.
[10] Kennedy J, Eberhart R C. Particle swarm optimization[C]∥Proceedings of the IEEE International Conference on Neural Networks, Piscataway, 1995:1942-1948.
[11] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation,1999, 3(2):82-102.
[12] Bergh F V D, Engellbrecht A P. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225-239.
[13] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation,2006, 10(3):91-96.
[14] Zhao Cheng ,Mei Wei-xing, Pan Wei .Building a grid-semantic map for the navigation of service robots through human-robot interaction[J].Digital Communications and Networks,2015,1(4):253-266
[15] Chellapilla K. Combining mutation operators in evolutionary programming[J]. IEEE Transactions on Evolutionary Computation, 1998, 2(3):91-96.
[16] Zhang Hai-bo,Huang Qing,Li Fang-wei,et al.A network security situation prediction model based on wavelet neural network with optimized parameters[J].Digital Communications and Networks,2016,2(3):139-144
[17] Tu Z, Lu Y. A robust stochastic genetica algorithm (StGA) for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):456-470.
[18] 孙延维,彭智明,李健波.基于粒子群优化与模糊聚类的社区发现算法[J].重庆邮电大学学报:自然科学版,2015,27(5):660-666.
Sun Yan-wei,Peng Zhi-ming,Li Jian-bo. Community detection algorithm based on particle swarm optimization and fuzzy clustering [J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2015,27(5):660-666.
[19] 侯燕,郭慧玲.关联规则挖掘结合简化粒子群优化的哈希回溯追踪协议[J].重庆邮电大学学报:自然科学版,2016,28(2):239-246.
Hou Yan,Guo Hui-ling. Hash IP trace-back protocol based on association rule mining and simplified particle swarm optimization[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2015,45(3): 907-912.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!